Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mol Ther ; 32(2): 440-456, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38213031

RESUMEN

Here we introduce a first-in-class microRNA-sensitive oncolytic Zika virus (ZIKV) for virotherapy application against central nervous system (CNS) tumors. The described methodology produced two synthetic modified ZIKV strains that are safe in normal cells, including neural stem cells, while preserving brain tropism and oncolytic effects in tumor cells. The microRNA-sensitive ZIKV introduces genetic modifications in two different virus sites: first, in the established 3'UTR region, and secondly, in the ZIKV protein coding sequence, demonstrating for the first time that the miRNA inhibition systems can be functional outside the UTR RNA sites. The total tumor remission in mice bearing human CNS tumors, including metastatic tumor growth, after intraventricular and systemic modified ZIKV administration, confirms the promise of this virotherapy as a novel agent against brain tumors-highly deadly diseases in urgent need of effective advanced therapies.


Asunto(s)
Neoplasias del Sistema Nervioso Central , MicroARNs , Viroterapia Oncolítica , Virus Oncolíticos , Infección por el Virus Zika , Virus Zika , Humanos , Ratones , Animales , Virus Oncolíticos/genética , Virus Zika/genética , MicroARNs/genética , Infección por el Virus Zika/terapia , Viroterapia Oncolítica/métodos
2.
Sci Rep ; 13(1): 19481, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945695

RESUMEN

VAMP (Vesicle-associated membrane protein)-associated protein B and C (VAPB) has been widely studied in neurodegenerative diseases such as ALS, but little is known about its role in cancer. Medulloblastoma is a common brain malignancy in children and arises from undifferentiated cells during neuronal development. Therefore, medulloblastoma is an interesting model to investigate the possible relationship between VAPB and tumorigenesis. Here we demonstrate that high VAPB expression in medulloblastoma correlates with decreased overall patient survival. Consistent with this clinical correlation, we find that VAPB is required for normal proliferation rates of medulloblastoma cells in vitro and in vivo. Knockout of VAPB (VAPBKO) delayed cell cycle progression. Furthermore, transcript levels of WNT-related proteins were decreased in the VAPBKO. We conclude that VAPB is required for proliferation of medulloblastoma cells, thus revealing VAPB as a potential therapeutic target for medulloblastoma treatment.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Meduloblastoma/genética , Neoplasias Cerebelosas/genética , Proliferación Celular/genética , Proteínas de Transporte Vesicular
3.
Viruses ; 13(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34696533

RESUMEN

The Zika virus (ZIKV) has shown a promising oncolytic effect against embryonal CNS tumors. However, studies on the effect of different administration routes and the ideal viral load in preclinical models are highly relevant aiming for treatment safety and efficiency. Here, we investigated the effect and effectiveness of different routes of administration, and the number of ZIKVBR injections on tumor tropism, destruction, and side effects. Furthermore, we designed an early-stage human brain organoid co-cultured with embryonal CNS tumors to analyze the ZIKVBR oncolytic effect. We showed that in the mice bearing subcutaneous tumors, the ZIKVBR systemically presented a tropism to the brain. When the tumor was located in the mice's brain, serial systemic injections presented efficient tumor destruction, with no neurological or other organ injury and increased mice survival. In the human cerebral organoid model co-cultured with embryonal CNS tumor cells, ZIKVBR impaired tumor progression. The gene expression of cytokines and chemokines in both models suggested an enhancement of immune cells recruitment and tumor inflammation after the treatment. These results open new perspectives for virotherapy using the ZIKVBR systemic administration route and multiple doses of low virus load for safe and effective treatment of embryonal CNS tumors, an orphan disease that urges new effective therapies.


Asunto(s)
Neoplasias Encefálicas/terapia , Viroterapia Oncolítica/métodos , Virus Zika/metabolismo , Animales , Encéfalo/virología , Neoplasias Encefálicas/patología , Línea Celular , Sistema Nervioso Central/efectos de los fármacos , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Inyecciones Intralesiones/métodos , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Virus Oncolíticos/metabolismo , Organoides , Virus Zika/inmunología , Infección por el Virus Zika/virología
5.
Hum Mol Genet ; 29(9): 1465-1475, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32280986

RESUMEN

Amyotrophic lateral sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as 'severe' and 'mild' from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy number variation and whole exome sequencing analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N = 5) and controls (N = 3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients' iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to the endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to the ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER-mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mitocondrias/genética , Degeneración Nerviosa/genética , Proteínas de Transporte Vesicular/genética , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Diferenciación Celular/genética , Retículo Endoplásmico/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Estrés Oxidativo/genética , RNA-Seq , Proteínas de Transporte Vesicular/deficiencia
6.
Mol Ther ; 28(5): 1276-1286, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220305

RESUMEN

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.


Asunto(s)
Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/terapia , Viroterapia Oncolítica/métodos , Seguridad del Paciente , Carga Tumoral , Infección por el Virus Zika/complicaciones , Virus Zika/inmunología , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Inmunidad , Inyecciones Espinales , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/virología , Monocitos/inmunología , Monocitos/virología , Neuronas/metabolismo , Neuronas/virología , Resultado del Tratamiento
7.
Brain Res ; 1730: 146646, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917138

RESUMEN

Primary central nervous system (CNS) tumors are the most common deadly childhood cancer. Several patients with medulloblastoma experience local or metastatic recurrences after standard treatment, a condition associated with very poor prognosis. Current neuroimaging techniques do not accurately detect residual stem-like medulloblastoma cells promoting tumor relapses. In attempt to identify candidate tumor markers that could be circulating in blood or cerebrospinal (CSF) fluid of patients, we evaluated the proteome and miRNome content of extracellular microvesicles (MVs) released by highly-aggressive stem-like medulloblastoma cells overexpressing the pluripotent factor OCT4A. These cells display enhanced tumor initiating capability and resistance to chemotherapeutic agents. A common set of 464 proteins and 10 microRNAs were exclusively detected in MVs of OCT4A-overexpressing cells from four distinct medulloblastoma cell lines, DAOY, CHLA-01-MED, D283-MED, and USP13-MED. The interactome mapping of these exclusive proteins and miRNAs revealed ERK, PI3K/AKT/mTOR, EGF/EGFR, and stem cell self-renewal as the main oncogenic signaling pathways altered in these aggressive medulloblastoma cells. Of these MV cargos, four proteins (UBE2M, HNRNPCL2, HNRNPCL3, HNRNPCL4) and five miRNAs (miR-4449, miR-500b, miR-3648, miR-1291, miR-3607) have not been previously reported in MVs from normal tissues and in CSF. These proteins and miRNAs carried within MVs might serve as biomarkers of aggressive stem-like medulloblastoma cells to improve clinical benefit by helping refining diagnosis, patient stratification, and early detection of relapsed disease.


Asunto(s)
Neoplasias Cerebelosas/diagnóstico , Vesículas Extracelulares/metabolismo , Meduloblastoma/diagnóstico , MicroARNs/análisis , Proteoma/análisis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/líquido cefalorraquídeo , Línea Celular Tumoral , Neoplasias Cerebelosas/sangre , Neoplasias Cerebelosas/líquido cefalorraquídeo , Humanos , Meduloblastoma/sangre , Meduloblastoma/líquido cefalorraquídeo , Pronóstico , Proteómica
8.
Hum. Mol. Genet. ; 29(9): 1465–1475, 2020.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17603

RESUMEN

Amyotrophic Lateral Sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as ‘severe’ and ‘mild’ from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy Number Variation (CNV) and Whole Exome Sequencing (WES) analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N=5) and controls (N=3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients’ iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls, and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER–mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.

9.
Mol. Ther. ; 28(5)2020.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17570

RESUMEN

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.

10.
Hum Mol Genet, v. 29, n. 9, p. 1465-1475, abr. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3007

RESUMEN

Amyotrophic Lateral Sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as ‘severe’ and ‘mild’ from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy Number Variation (CNV) and Whole Exome Sequencing (WES) analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N=5) and controls (N=3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients’ iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls, and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER–mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.

11.
Mol Ther, v. 28, n. 5, mai. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2990

RESUMEN

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.

12.
Mol Oncol ; 13(12): 2574-2587, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31402560

RESUMEN

Aberrant expression of the pluripotency factor OCT4A in embryonal tumors of the central nervous system (CNS) is a key factor that contributes to tumor aggressiveness and correlates with poor patient survival. OCT4A overexpression has been shown to up-regulate miR-367, a microRNA (miRNA) that regulates pluripotency in embryonic stem cells and stem-like aggressive traits in cancer cells. Here, we show that (a) miR-367 is carried in microvesicles derived from embryonal CNS tumor cells expressing OCT4A; and (b) inhibition of miR-367 in these cells attenuates their aggressive traits. miR-367 silencing in OCT4A-overexpressing tumor cells significantly reduced their proliferative and invasive behavior, clonogenic activity, and tumorsphere generation capability. In vivo, targeting of miR-367 through direct injections of a specific inhibitor into the cerebrospinal fluid of Balb/C nude mice bearing OCT4A-overexpressing tumor xenografts inhibited tumor development and improved overall survival. miR-367 was also shown to target SUZ12, one of the core components of the polycomb repressive complex 2 known to be involved in epigenetic silencing of pluripotency-related genes, including POU5F1, which encodes OCT4A. Our findings reveal possible clinical applications of a cancer stemness pathway, highlighting miR-367 as a putative liquid biopsy biomarker that could be further explored to improve early diagnosis and prognosis prediction, and potentially serve as a therapeutic target in aggressive embryonal CNS tumors.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Sistema Nervioso Central , Silenciador del Gen , MicroARNs , Neoplasias de Células Germinales y Embrionarias , Células Madre Neoplásicas , ARN Neoplásico , Animales , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN Neoplásico/antagonistas & inhibidores , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Res ; 78(12): 3363-3374, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29700002

RESUMEN

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKVBR) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKVBR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKVBR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKVBR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKVBR-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKVBR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR.


Asunto(s)
Neoplasias del Sistema Nervioso Central/terapia , Neoplasias de Células Germinales y Embrionarias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , Virus Zika/fisiología , Animales , Encéfalo/citología , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/patología , Humanos , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de Células Germinales y Embrionarias/mortalidad , Neoplasias de Células Germinales y Embrionarias/patología , Células-Madre Neurales/patología , Análisis de Supervivencia , Resultado del Tratamiento , Esparcimiento de Virus , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mol Neurobiol ; 55(7): 5962-5975, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29128905

RESUMEN

Several methods have been used to study the neuropathogenesis of Down syndrome (DS), such as mouse aneuploidies, post mortem human brains, and in vitro cell culture of neural progenitor cells. More recently, induced pluripotent stem cell (iPSC) technology has offered new approaches in investigation, providing a valuable tool for studying specific cell types affected by DS, especially neurons and astrocytes. Here, we investigated the role of astrocytes in DS developmental disease and the impact of the astrocyte secretome in neuron mTOR signaling and synapse formation using iPSC derived from DS and wild-type (WT) subjects. We demonstrated for the first time that DS neurons derived from hiPSC recapitulate the hyperactivation of the Akt/mTOR axis observed in DS brains and that DS astrocytes may play a key role in this dysfunction. Our results bear out that 21 trisomy in astrocytes contributes to neuronal abnormalities in addition to cell autonomous dysfunctions caused by 21 trisomy in neurons. Further research in this direction will likely yield additional insights, thereby improving our understanding of DS and potentially facilitating the development of new therapeutic approaches.


Asunto(s)
Astrocitos/patología , Síndrome de Down/patología , Células Madre Pluripotentes Inducidas/patología , Neurogénesis , Neuronas/patología , Transducción de Señal , Sinapsis/patología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis , Astrocitos/metabolismo , Proliferación Celular , Técnicas de Cocultivo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/metabolismo , Esferoides Celulares/patología
15.
Cancer Res. ; 78(12): p. 3363-3374, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15210

RESUMEN

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV(BR)) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV(BR) was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV(BR) in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV(BR). furthermore, modulation of Wnt signaling pathway significantly affected ZIKV(BR)-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV(BR) could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.

16.
Cancer Res, v. 78, n. 78, p. 3363-3374, jun. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2491

RESUMEN

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV(BR)) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV(BR) was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV(BR) in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV(BR). furthermore, modulation of Wnt signaling pathway significantly affected ZIKV(BR)-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV(BR) could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.

17.
Stem Cells Int ; 2017: 4972078, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553358

RESUMEN

Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRß. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor ß-aminopropionitrile (ßAPN) significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with ßAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.

18.
Oncotarget ; 8(12): 19192-19204, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28186969

RESUMEN

Medulloblastoma is a highly aggressive pediatric brain tumor, in which sporadic expression of the pluripotency factor OCT4 has been recently correlated with poor patient survival. However the contribution of specific OCT4 isoforms to tumor aggressiveness is still poorly understood. Here, we report that medulloblastoma cells stably overexpressing the OCT4A isoform displayed enhanced clonogenic, tumorsphere generation, and invasion capabilities. Moreover, in an orthotopic metastatic model of medulloblastoma, OCT4A overexpressing cells generated more developed, aggressive and infiltrative tumors, with tumor-bearing mice attaining advanced metastatic disease and shorter survival rates. Pro-oncogenic OCT4A effects were expression-level dependent and accompanied by distinct chromosomal aberrations. OCT4A overexpression in medulloblastoma cells also induced a marked differential expression of non-coding RNAs, including poorly characterized long non-coding RNAs and small nucleolar RNAs. Altogether, our findings support the relevance of pluripotency-related factors in the aggravation of medulloblastoma traits classically associated with poor clinical outcome, and underscore the prognostic and therapeutic value of OCT4A in this challenging type of pediatric brain cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Femenino , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factor 3 de Transcripción de Unión a Octámeros/genética , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncotarget ; 8(12): 19192-19204, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15385

RESUMEN

Medulloblastoma is a highly aggressive pediatric brain tumor, in which sporadic expression of the pluripotency factor OCT4 has been recently correlated with poor patient survival. However the contribution of specific OCT4 isoforms to tumor aggressiveness is still poorly understood. Here, we report that medulloblastoma cells stably overexpressing the OCT4A isoform displayed enhanced clonogenic, tumorsphere generation, and invasion capabilities. Moreover, in an orthotopic metastatic model of medulloblastoma, OCT4A overexpressing cells generated more developed, aggressive and infiltrative tumors, with tumor-bearing mice attaining advanced metastatic disease and shorter survival rates. Pro-oncogenic OCT4A effects were expression-level dependent and accompanied by distinct chromosomal aberrations. OCT4A overexpression in medulloblastoma cells also induced a marked differential expression of non-coding RNAs, including poorly characterized long non-coding RNAs and small nucleolar RNAs. Altogether, our findings support the relevance of pluripotency-related factors in the aggravation of medulloblastoma traits classically associated with poor clinical outcome, and underscore the prognostic and therapeutic value of OCT4A in this challenging type of pediatric brain cancer.

20.
Cytotechnology ; 68(4): 1545-60, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26358937

RESUMEN

Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...