Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39105276

RESUMEN

Soils provide essential ecosystem services and represent the most diverse habitat on Earth. It has been suggested that the presence of various physico-chemically heterogeneous microhabitats supports the enormous diversity of microbial communities in soil. However, little is known about the relationship between microbial communities and their immediate environment at the micro- to millimetre scale. In this study, we examined whether bacteria, archaea, and fungi organize into distinct communities in individual 2-mm-sized soil aggregates and compared them to communities of homogenized bulk soil samples. Furthermore, we investigated their relationship to their local environment by concomitantly determining microbial community structure and physico-chemical properties from the same individual aggregates. Aggregate communities displayed exceptionally high beta-diversity, with 3-4 aggregates collectively capturing more diversity than their homogenized parent soil core. Up to 20%-30% of ASVs (particularly rare ones) were unique to individual aggregates selected within a few centimetres. Aggregates and bulk soil samples showed partly different dominant phyla, indicating that taxa that are potentially driving biogeochemical processes at the small scale may not be recognized when analysing larger soil volumes. Microbial community composition and richness of individual aggregates were closely related to aggregate-specific carbon and nitrogen content, carbon stable-isotope composition, and soil moisture, indicating that aggregates provide a stable environment for sufficient time to allow co-development of communities and their environment. We conclude that the soil microbiome is a metacommunity of variable subcommunities. Our study highlights the necessity to study small, spatially coherent soil samples to better understand controls of community structure and community-mediated processes in soils.


Asunto(s)
Archaea , Bacterias , Hongos , Microbiota , Microbiología del Suelo , Suelo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Suelo/química , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , Archaea/clasificación , Archaea/aislamiento & purificación , Biodiversidad , Carbono/análisis , Carbono/metabolismo , Nitrógeno/análisis
2.
PLoS Comput Biol ; 20(8): e1012320, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116194

RESUMEN

Although depolymerization of complex carbohydrates is a growth-limiting bottleneck for microbial decomposers, we still lack understanding about how the production of different types of extracellular enzymes affect individual microbes and in turn the performance of whole decomposer communities. In this work we use a theoretical model to evaluate the potential trade-offs faced by microorganisms in biopolymer decomposition which arise due to the varied biochemistry of different depolymerizing enzyme classes. We specifically consider two broad classes of depolymerizing extracellular enzymes, which are widespread across microbial taxa: exo-enzymes that cleave small units from the ends of polymer chains and endo-enzymes that act at random positions generating degradation products of varied sizes. Our results demonstrate a fundamental trade-off in the production of these enzymes, which is independent of system's complexity and which appears solely from the intrinsically different temporal depolymerization dynamics. As a consequence, specialists that produce either exo- or only endo-enzymes limit their growth to high or low substrate conditions, respectively. Conversely, generalists that produce both enzymes in an optimal ratio expand their niche and benefit from the synergy between the two enzymes. Finally, our results show that, in spatially-explicit environments, consortia composed of endo- and exo-specialists can only exist under oligotrophic conditions. In summary, our analysis demonstrates that the (evolutionary or ecological) selection of a depolymerization pathway will affect microbial fitness under low- or high substrate conditions, with impacts on the ecological dynamics of microbial communities. It provides a possible explanation why many polysaccharide degraders in nature show the genetic potential to produce both of these enzyme classes.

3.
ACS Appl Mater Interfaces ; 16(24): 31407-31418, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38841759

RESUMEN

Intermolecular charge-transfer (CT) states are extended excitons with a charge separation on the nanometer scale. Through absorption and emission processes, they couple to the ground state. This property is employed both in light-emitting and light-absorbing devices. Their conception often relies on donor-acceptor (D-A) interfaces, so-called type-II heterojunctions, which usually generate significant electric fields. Several recent studies claim that these fields alter the energetic configuration of the CT states at the interface, an idea holding prospects like multicolor emission from a single emissive interface or shifting the absorption characteristics of a photodetector. Here, we test this hypothesis and contribute to the discussion by presenting a new model system. Through the fabrication of planar organic p-(i-)n junctions, we generate an ensemble of oriented CT states that allows the systematic assessment of electric field impacts. By increasing the thickness of the intrinsic layer at the D-A interface from 0 to 20 nm and by applying external voltages up to 6 V, we realize two different scenarios that controllably tune the intrinsic and extrinsic electric interface fields. By this, we obtain significant shifts of the CT-state peak emission of about 0.5 eV (170 nm from red to green color) from the same D-A material combination. This effect can be explained in a classical electrostatic picture, as the interface electric field alters the potential energy of the electric CT-state dipole. This study illustrates that CT-state energies can be tuned significantly if their electric dipoles are aligned to the interface electric field.

4.
Cancers (Basel) ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893184

RESUMEN

In the context of breast cancer treatment optimization, this study prospectively examines the feasibility and outcomes of utilizing intraoperative radiotherapy (IORT) as a boost in combination with standard external beam radiotherapy (EBRT) for high-risk patients. Different guidelines recommend such a tumor bed boost in addition to whole breast irradiation with EBRT for patients with risk factors for local breast cancer recurrence. The TARGIT BQR (NCT01440010) is a prospective, multicenter registry study aimed at ensuring the quality of clinical outcomes. It provides, for the first time, data from a large cohort with a detailed assessment of acute and long-term toxicity following an IORT boost using low-energy X-rays. Inclusion criteria encompassed tumors up to 3.5 cm in size and preoperative indications for a boost. The IORT boost, administered immediately after tumor resection, delivered a single dose of 20 Gy. EBRT and systemic therapy adhered to local tumor board recommendations. Follow-up for toxicity assessment (LENT SOMA criteria: fibrosis, teleangiectasia, retraction, pain, breast edema, lymphedema, hyperpigmentation, ulceration) took place before surgery, 6 weeks to 90 days after EBRT, 6 months after IORT, and then annually using standardized case report forms (CRFs). Between 2011 and 2020, 1133 patients from 10 centers were preoperatively enrolled. The planned IORT boost was conducted in 90%, and EBRT in 97% of cases. Median follow-up was 32 months (range 1-120, 20.4% dropped out), with a median age of 61 years (range 30-90). No acute grade 3 or 4 toxicities were observed. Acute side effects included erythema grade 1 or 2 in 4.4%, palpable seroma in 9.1%, punctured seroma in 0.3%, and wound healing disorders in 2.1%. Overall, chronic teleangiectasia of any grade occurred in 16.2%, fibrosis grade ≥ 2 in 14.3%, pain grade ≥ 2 in 3.4%, and hyperpigmentation in 1.1%. In conclusion, a tumor bed boost through IORT using low-energy X-rays is a swift and feasible method that demonstrates low rates in terms of acute or long-term toxicity profiles in combination with whole breast irradiation.

5.
Dis Model Mech ; 17(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775430

RESUMEN

Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin-18 (IL-18) and interferon gamma (IFNγ). Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-oligonucleotide-induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome or the downstream caspase-1 prevented MAS-mediated upregulation of IL-18 in the plasma but, interestingly, did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore blockade of IL-1 receptor with its antagonist IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that, during the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18 - a key cytokine in clinical cases of MAS - but was not a driving factor in the pathogenesis of CpG-induced MAS.


Asunto(s)
Modelos Animales de Enfermedad , Inflamasomas , Interleucina-18 , Síndrome de Activación Macrofágica , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-18/sangre , Inflamasomas/metabolismo , Síndrome de Activación Macrofágica/sangre , Síndrome de Activación Macrofágica/patología , Síndrome de Activación Macrofágica/complicaciones , Caspasa 1/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Portadoras/metabolismo , Oligodesoxirribonucleótidos/farmacología , Proteína Antagonista del Receptor de Interleucina 1/sangre , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Receptores de Interleucina-1/metabolismo
6.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464243

RESUMEN

Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.

7.
Oncol Res Treat ; 47(4): 145-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38382477

RESUMEN

INTRODUCTION: Phyllodes tumors belong to uncommon fibroepithelial breast tumors with a range of biological behaviors. Phyllodes tumors are responsible for less than 1 percent of all neoplasms of the breast. CASE PRESENTATION: A 66-year-old woman presented to our Breastcancer Unit in March 2021 because of a huge mass of her left breast with bleeding out of a tumor necrosis. Five years ago in 2016, a benign phyllodes tumor was diagnosed externally. When we started the treatment, the tumor had a weight of 18.6 kg. CONCLUSION: We describe the surgical management and the systemic treatment of metastatic disease.


Asunto(s)
Neoplasias de la Mama , Tumor Filoide , Femenino , Humanos , Anciano , Tumor Filoide/cirugía , Tumor Filoide/diagnóstico , Tumor Filoide/patología , Mastectomía , Neoplasias de la Mama/cirugía
8.
Sci Adv ; 10(8): eadk6295, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394199

RESUMEN

Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions. In a long-term soil warming experiment in a Subarctic grassland, we investigated how active populations of bacteria and archaea responded to elevated soil temperatures (+6°C) and the influence of plant roots, by measuring taxon-specific growth rates using quantitative stable isotope probing and 18O water vapor equilibration. Contrary to prior assumptions, increased community growth was associated with a greater number of active bacterial taxa rather than generally faster-growing populations. We also found that root presence enhanced bacterial growth at ambient temperatures but not at elevated temperatures, indicating a shift in plant-microbe interactions. Our results, thus, reveal a mechanism of how soil bacteria respond to warming that cannot be inferred from community-level measurements.


Asunto(s)
Carbono , Suelo , Microbiología del Suelo , Bacterias , Archaea
9.
Nat Commun ; 14(1): 8210, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097563

RESUMEN

Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.


Asunto(s)
Microbioma Gastrointestinal , Inulina , Inulina/metabolismo , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias , Prebióticos
10.
Discov Immunol ; 1(1): kyac005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38566906

RESUMEN

Inflammasomes and the interleukin (IL)-1 family of cytokines are key mediators of both inflammation and immunothrombosis. Inflammasomes are responsible for the release of the pro-inflammatory cytokines IL-1ß and IL-18, as well as releasing tissue factor (TF), a pivotal initiator of the extrinsic coagulation cascade. Uncontrolled production of inflammatory cytokines results in what is known as a "cytokine storm" leading to hyperinflammatory disease. Cytokine storms can complicate a variety of diseases and results in hypercytokinemia, coagulopathies, tissue damage, multiorgan failure, and death. Patients presenting with cytokine storm syndromes have a high mortality rate, driven in part by disseminated intravascular coagulation (DIC). While our knowledge on the factors propagating cytokine storms is increasing, how cytokine storm influences DIC remains unknown, and therefore treatments for diseases, where these aspects are a key feature are limited, with most targeting specific cytokines. Currently, no therapies target the immunothrombosis aspect of hyperinflammatory syndromes. Here we discuss how targeting the inflammasome and pyroptosis may be a novel therapeutic strategy for the treatment of hyperinflammation and its associated pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA