Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739607

RESUMEN

Global scallop fisheries are economically important but are associated with environmental impacts to seabed communities resulting from the direct physical contact of the fishing gear with the seabed. Gear modifications attempting to reduce this contact must be economically feasible such that the catch numbers for the target species is maintained or increased. This study investigated the outcome of reducing seabed contact on retained catch of scallops and bycatch by the addition of skids to the bottom of the collecting bag of scallop dredges. We used a paired control experimental design to investigate the impact of the gear modification in different habitat types. The modified skid dredge generally caught more marketable scallops per unit area fished compared with the standard dredge (+5%). However, the skid dredge also retained more bycatch (+11%) and more undersize scallops (+16%). The performance of the two dredges was habitat specific which indicates the importance of adjusting management measures in relation to habitat type. To realize the potential environmental benefits associated with the improvement in catchability of this gear modification, further gear modification is required to reduce the catch of undersize scallops and bycatch. Furthermore we advocate that technical gear innovations in scallop dredging need to be part of a comprehensive and effective fisheries management system.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Pectinidae , Animales , Conservación de los Recursos Naturales/métodos
2.
PLoS One ; 18(11): e0288484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972207

RESUMEN

Wild capture fisheries are of economic and social importance, providing a primary source of protein to people globally. There is a broad research base on the environmental impacts of fishing gears and processing methods yet, the impact on the global CO2 budget is less well studied. Evaluating the risk that wild capture fisheries pose to ecosystem health is vital to sustainably managing fishing practices to meet increasing global nutritional needs and reverse declines in marine biodiversity. At the same time meeting net-zero ambitions by reducing direct and indirect GHG emissions is vital. Ecological risk assessments, trait-based assessments, and vulnerability assessments have long supported fisheries management systems globally but do not yet provide any representation regarding the impacts that fishing gears have on the ability of the habitat to capture and store carbon. Considering the importance of accessibility and transparency in approaches necessary for fisheries sustainability certifications, this paper describes a method to integrate habitat carbon capacity attributes into the Marine Stewardship Council (MSC) Consequence and Spatial Analysis (CSA) framework. Applying the CSA carbon extension developed herein produces different CSA risk scores compared to the MSC CSA that does not account for carbon. This has potential consequences for certification schemes as carbon becomes more important in the fisheries sustainability conversation. The CSA carbon extension tool developed here is an important first step in incorporating carbon indicators into evaluations of fisheries that consider fishery carbon impacts.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Conservación de los Recursos Naturales/métodos , Caza , Biodiversidad , Explotaciones Pesqueras
6.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983873

RESUMEN

Bottom trawling is widespread globally and impacts seabed habitats. However, risks from trawling remain unquantified at large scales in most regions. We address these issues by synthesizing evidence on the impacts of different trawl-gear types, seabed recovery rates, and spatial distributions of trawling intensity in a quantitative indicator of biotic status (relative amount of pretrawling biota) for sedimentary habitats, where most bottom-trawling occurs, in 24 regions worldwide. Regional average status relative to an untrawled state (=1) was high (>0.9) in 15 regions, but <0.7 in three (European) regions and only 0.25 in the Adriatic Sea. Across all regions, 66% of seabed area was not trawled (status = 1), 1.5% was depleted (status = 0), and 93% had status > 0.8. These assessments are first order, based on parameters estimated with uncertainty from meta-analyses; we recommend regional analyses to refine parameters for local specificity. Nevertheless, our results are sufficiently robust to highlight regions needing more effective management to reduce exploitation and improve stock sustainability and seabed environmental status-while also showing seabed status was high (>0.95) in regions where catches of trawled fish stocks meet accepted benchmarks for sustainable exploitation, demonstrating that environmental benefits accrue from effective fisheries management. Furthermore, regional seabed status was related to the proportional area swept by trawling, enabling preliminary predictions of regional status when only the total amount of trawling is known. This research advances seascape-scale understanding of trawl impacts in regions around the world, enables quantitative assessment of sustainability risks, and facilitates implementation of an ecosystem approach to trawl fisheries management globally.


Asunto(s)
Biota , Ecosistema , Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales , Peces , Geografía , Sedimentos Geológicos , Júpiter , Océanos y Mares , Dinámica Poblacional
7.
J Fish Biol ; 98(1): 3, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33444469

Asunto(s)
Poecilia , Animales
10.
J Fish Biol ; 96(6): 1293, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32572953
11.
J Fish Biol ; 96(4): 863, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32281108
16.
17.
J Fish Biol ; 95(4): 991, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31523818
18.
PeerJ ; 7: e6672, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31065453

RESUMEN

Marine protected areas (MPAs) are increasingly being used as conservation tools in the marine environment. Success of MPAs depends upon sound scientific design and societal support. Studies that have assessed societal preferences for temperate MPAs have generally done it without considering the existence of discrete groups of opinion within society and have largely considered offshore and deep-sea areas. This study quantifies societal preferences and economic support for coastal MPAs in Wales (UK) and assesses the presence of distinct groups of preference for MPA management, through a latent class choice experiment approach. Results show a general support for the protection of the marine environment in the form of MPAs and that society is willing to bear the costs derived from conservation. Despite a general opposition toward MPAs where human activities are completely excluded, there is some indication that three classes of preferences within society can be established regarding the management of potentially sea-floor damaging activities. This type of approach allows for the distinction between those respondents with positive preferences for particular types of management from those who experience disutility. We conclude that insights from these types of analyses can be used by policy-makers to identify those MPA designs and management combinations most likely to be supported by particular sectors of society.

19.
J Environ Manage ; 228: 495-505, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30268716

RESUMEN

Marine recreational fishing (MRF) benefits individuals and economies, but can also impact fish stocks and associated ecosystems. Fish are an important resource providing direct economic benefit through commercial and recreational exploitation, and more esoteric ecosystem services. It is important to consider recreational fishing in marine spatial planning, but spatial information on coastal utilisation for MRF is frequently lacking. Public sources of local knowledge were reviewed and the frequency of unique references to sites extracted. Sites were georeferenced using a gazetteer compiled from the Ordnance Survey and United Kingdom Hydrographic Office named sea features gazetteer and local knowledge sources. Recreational fishing site densities were calculated across 2700 km of coastline and this proxy indicator of coastal utilisation validated against two independent surveys using permutative Monte Carlo sampling to control for sparse and non-independent data. Site density had fair agreement with independent surveys, but standardization by shore length reduced this agreement. Applying a 3 by 3 box filter convolution to the spatial layers improved the agreement between local knowledge derived predictions of activity and those of directed surveys, and permutation testing showed that agreement did not arise as a result of the convolution itself. High and low activity areas were more accurately predicted than areas of intermediate activity. Site density derived from heterogeneous participant and local knowledge can produce qualitative predictions of where recreational fishers fish, and applying a convolution can improve the predictive power of data so derived. However, this approach will be subject to unquantifiable bias and may fail to identify areas highly valued by marine recreational fishers. Thus it should be used in conjunction with other information in decision making and may be best suited to inform the early stage sampling design of on-site surveys or to complement other data sets in mapping areas of importance to recreational fishers.


Asunto(s)
Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales , Ecosistema , Peces , Océanos y Mares , Recreación , Reino Unido
20.
Mar Biol ; 164(11): 213, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104316

RESUMEN

The lack of detailed life history (LH) information (e.g. age, growth, size at maturity, sex composition etc.) for many species of conservation importance limits the implementation of appropriate conservation measures. Typically, LH information is acquired using lethal sampling techniques, which undermines the goal of conservation. This is particularly problematic for many shark species that have low fecundity and slow growth rates. Here we tested the use of non-invasive laser photogrammetry to measure body morphometry in vivo. We used random forest classification models to identify allometric relationships (ratios between body measurements) that discriminated between the sex and stage of sexual maturity of Scyliorhinus canicula. We coupled the use of allometric ratios (determined from cadavers) with parallel laser photogrammetry, in order to collect total length (TL) and finer scale morphometrics from 37 free-swimming individuals. TL measurements proved to be accurate (SE = 5.2%) and precise (CV = 1.8%), and did not differ significantly from the known TL of the respective animal (t36 = 0.7, P = 0.5). Conditional Inference tree model predictions of free-swimming sharks correctly predicted 100% of mature males and 79% of immature males. Our results suggest that when used together, allometric ratios and parallel laser photogrammetry have the potential to be a promising alternative to collect essential life history information from free swimming animals and avoids the need for destructive sampling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...