Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(36): 23654-23662, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39224052

RESUMEN

Ketoaldehydes are key intermediates in biochemical processes including carbohydrate, lipid, and amino acid metabolism. Despite their crucial role in the interstellar synthesis of essential biomolecules necessary for the Origins of Life, their formation mechanisms have largely remained elusive. Here, we report the first bottom-up formation of methylglyoxal (CH3C(O)CHO)-the simplest ketoaldehyde-through the barrierless recombination of the formyl (HCO) radical with the acetyl (CH3CO) radical in low-temperature interstellar ice analogs upon exposure to energetic irradiation as proxies of galactic cosmic rays. Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies, methylglyoxal and its enol tautomer 2-hydroxypropenone (CH3C(OH)CO) were identified in the gas phase during the temperature-programmed desorption of irradiated carbon monoxide-acetaldehyde (CO-CH3CHO) ices, suggesting their potential as promising candidates for future astronomical searches. Once synthesized in cold molecular clouds, methylglyoxal can serve as a key precursor to sugars, sugar acids, and amino acids. Furthermore, this work provides the first experimental evidence for tautomerization of a ketoaldehyde in interstellar ice analogs, advancing our fundamental knowledge of how ketoaldehydes and their enol tautomers can be synthesized in deep space.


Asunto(s)
Piruvaldehído , Piruvaldehído/química , Hielo , Medio Ambiente Extraterrestre/química , Acetaldehído/química , Acetaldehído/análogos & derivados
3.
J Phys Chem A ; 128(28): 5707-5720, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38967960

RESUMEN

To understand the reactivity of resonantly stabilized radicals, often found in relevant concentrations in gaseous environments, it is important to determine their main reaction pathways. Here, it is investigated whether the fulvenallenyl radical (C7H5·) reacts preferentially with closed-shell molecules or radicals. Electronic structure calculations on the C10H9 potential energy surface accessed by the reactions of C7H5· with methylacetylene (CH3CCH) and allene (H2CCCH2) were combined with RRKM-ME calculations of temperature- and pressure-dependent rate constants using the automated EStokTP software suite and kinetic modeling to assess the reactivity of C7H5· with closed-shell unsaturated hydrocarbons. Experimentally, the reactions were attempted in a chemical microreactor heated to 998 ± 10 K by preparing fulvenallenyl radicals via pyrolysis of trichloromethylbenzene (C7H5Cl3) and seeding the radicals in methylacetylene or allene carrier gas, with product identification by means of photoionization mass spectrometry. The measured photoionization efficiency curve of m/z = 128 was assigned to a linear combination of the reference curves of two C10H8 isomers, azulene (minor) and naphthalene (major), presumably resulting from the C7H5· plus C3H4 reactions. However, the calculations demonstrated that these reactions are too slow, and kinetic modeling of processes in the reactor allowed us to conclude that the observation of naphthalene and azulene is due to the C7H5· plus C3H3· reaction, where propargyl is produced by direct hydrogen atom abstraction by chlorine (Cl) atoms from allene or methylacetylene and Cl stem from the pyrolysis of C7H5Cl3. Modeling results under the copyrolysis conditions of toluene and methylacetylene in high-temperature shock tube experiments confirmed the prevalence of the fulvenallenyl reaction with propargyl over its reactions with C3H4 even when the concentrations of allene and methylacetylene largely exceed that of propargyl. Overall, the reactions of fulvenallenyl with both allene and methylacetylene were found to be noncompetitive in the formation of naphthalene and azulene thus attesting the inefficiency of the fulvenallenyl radical reactions with the prototype closed-shell hydrocarbon species. In the meantime, the new reaction pathways revealed, including H-assisted isomerizations between C10H8 isomers and decomposition reactions of various C10H9 isomers, emerge as relevant and are recommended for inclusion in combustion kinetic models for naphthalene formation.

4.
Proc Natl Acad Sci U S A ; 121(24): e2320215121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830103

RESUMEN

The Kuiper Belt object (KBO) Arrokoth, the farthest object in the Solar System ever visited by a spacecraft, possesses a distinctive reddish surface and is characterized by pronounced spectroscopic features associated with methanol. However, the fundamental processes by which methanol ices are converted into reddish, complex organic molecules on Arrokoth's surface have remained elusive. Here, we combine laboratory simulation experiments with a spectroscopic characterization of methanol ices exposed to proxies of galactic cosmic rays (GCRs). Our findings reveal that the surface exposure of methanol ices at 40 K can replicate the color slopes of Arrokoth. Sugars and their derivatives (acids, alcohols) with up to six carbon atoms, including glucose and ribose-fundamental building block of RNA-were ubiquitously identified. In addition, polycyclic aromatic hydrocarbons (PAHs) with up to six ring units (13C22H12) were also observed. These sugars and their derivatives along with PAHs connected by unsaturated linkers represent key molecules rationalizing the reddish appearance of Arrokoth. The formation of abundant sugar-related molecules dubs Arrokoth as a sugar world and provides a plausible abiotic preparation route for a key class of biorelevant molecules on the surface of KBOs prior to their delivery to prebiotic Earth.

5.
Phys Chem Chem Phys ; 26(26): 18321-18332, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912536

RESUMEN

The biphenyl molecule (C12H10) acts as a fundamental molecular backbone in the stereoselective synthesis of organic materials due to its inherent twist angle causing atropisomerism in substituted derivatives and in molecular mass growth processes in circumstellar environments and combustion systems. Here, we reveal an unconventional low-temperature phenylethynyl addition-cyclization-aromatization mechanism for the gas-phase preparation of biphenyl (C12H10) along with ortho-, meta-, and para-substituted methylbiphenyl (C13H12) derivatives through crossed molecular beams and computational studies providing compelling evidence on their formation via bimolecular gas-phase reactions of phenylethynyl radicals (C6H5CC, X2A1) with 1,3-butadiene-d6 (C4D6), isoprene (CH2C(CH3)CHCH2), and 1,3-pentadiene (CH2CHCHCHCH3). The dynamics involve de-facto barrierless phenylethynyl radical additions via submerged barriers followed by facile cyclization and hydrogen shift prior to hydrogen atom emission and aromatization to racemic mixtures (ortho, meta) of biphenyls in overall exoergic reactions. These findings not only challenge our current perception of biphenyls as high temperature markers in combustion systems and astrophysical environments, but also identify biphenyls as fundamental building blocks of complex polycyclic aromatic hydrocarbons (PAHs) such as coronene (C24H12) eventually leading to carbonaceous nanoparticles (soot, grains) in combustion systems and in deep space thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

6.
Nat Commun ; 15(1): 4409, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782930

RESUMEN

For the last century, the source of sulfur in Earth's very first organisms has remained a fundamental, unsolved enigma. While sulfates and their organic derivatives with sulfur in the S(+VI) oxidation state represent core nutrients in contemporary biochemistry, the limited bioavailability of sulfates during Earth's early Archean period proposed that more soluble S(+IV) compounds served as the initial source of sulfur for the first terrestrial microorganisms. Here, we reveal via laboratory simulation experiments that the three simplest alkylsulfonic acids-water soluble organic S(+IV) compounds-can be efficiently produced in interstellar, sulfur-doped ices through interaction with galactic cosmic rays. This discovery opens a previously elusive path into the synthesis of vital astrobiological significance and untangles fundamental mechanisms of a facile preparation of sulfur-containing, biorelevant organics in extraterrestrial ices; these molecules can be eventually incorporated into comets and asteroids before their delivery and detection on Earth such as in the Murchison, Tagish Lake, and Allende meteorites along with the carbonaceous asteroid Ryugu.

7.
Faraday Discuss ; 251(0): 509-522, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38766758

RESUMEN

The exploration of the fundamental formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) is crucial for the understanding of molecular mass growth processes leading to two- and three-dimensional carbonaceous nanostructures (nanosheets, graphenes, nanotubes, buckyballs) in extraterrestrial environments (circumstellar envelopes, planetary nebulae, molecular clouds) and combustion systems. While key studies have been conducted exploiting traditional, high-temperature mechanisms such as the hydrogen abstraction-acetylene addition (HACA) and phenyl addition-dehydrocyclization (PAC) pathways, the complexity of extreme environments highlights the necessity of investigating chemically diverse mass growth reaction mechanisms leading to PAHs. Employing the crossed molecular beams technique coupled with electronic structure calculations, we report on the gas-phase synthesis of phenanthrene (C14H10)-a three-ring, 14π benzenoid PAH-via a phenylethynyl addition-cyclization-aromatization mechanism, featuring bimolecular reactions of the phenylethynyl radical (C6H5CC, X2A1) with benzene (C6H6) under single collision conditions. The dynamics involve a phenylethynyl radical addition to benzene without entrance barrier leading eventually to phenanthrene via indirect scattering dynamics through C14H11 intermediates. The barrierless nature of reaction allows rapid access to phenanthrene in low-temperature environments such as cold molecular clouds which can reach temperatures as low as 10 K. This mechanism constitutes a unique, low-temperature framework for the formation of PAHs as building blocks in molecular mass growth processes to carbonaceous nanostructures in extraterrestrial environments thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

8.
J Am Chem Soc ; 146(17): 12174-12184, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629886

RESUMEN

Orthocarboxylic acids─organic molecules carrying three hydroxyl groups at the same carbon atom─have been distinguished as vital reactive intermediates by the atmospheric science and physical (organic) chemistry communities as transients in the atmospheric aerosol cycle. Predicted short lifetimes and their tendency to dehydrate to a carboxylic acid, free orthocarboxylic acids, signify one of the most elusive classes of organic reactive intermediates, with even the simplest representative methanetriol (CH(OH)3)─historically known as orthoformic acid─not previously been detected experimentally. Here, we report the first synthesis of the previously elusive methanetriol molecule in low-temperature mixed methanol (CH3OH) and molecular oxygen (O2) ices subjected to energetic irradiation. Supported by electronic structure calculations, methanetriol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies and the detection of photoionization fragments. The first synthesis and detection of methanetriol (CH(OH)3) reveals its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition. These findings progress our fundamental understanding of the chemistry and chemical bonding of methanetriol, hydroxyperoxymethane (CH3OOOH), and hydroxyperoxymethanol (CH2(OH)OOH), which are all prototype molecules in the oxidation chemistry of the atmosphere.

9.
Chemphyschem ; 25(14): e202400151, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38635959

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) imply the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles, commonly referred to as soot particles in combustion systems and interstellar grains in deep space. Whereas gas phase formation pathways to the simplest PAH - naphthalene (C10H8) - are beginning to emerge, reaction pathways leading to the synthesis of the 14π Hückel aromatic PAHs anthracene and phenanthrene (C14H10) are still incomplete. Here, by utilizing a chemical microreactor in conjunction with vacuum ultraviolet (VUV) photoionization (PI) of the products followed by detection of the ions in a reflectron time-of-flight mass spectrometer (ReTOF-MS), the reaction between the 1'- and 2'-methylnaphthyl radicals (C11H9⋅) with the propargyl radical (C3H3⋅) accesses anthracene (C14H10) and phenanthrene (C14H10) via the Propargyl Addition-BenzAnnulation (PABA) mechanism in conjunction with a hydrogen assisted isomerization. The preferential formation of the thermodynamically less stable anthracene isomer compared to phenanthrene suggests a kinetic, rather than a thermodynamics control of the reaction.

10.
J Phys Chem A ; 128(18): 3613-3624, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38662507

RESUMEN

High-energy-density aluminum nanoparticles (AlNPs) upon thermal annealing followed by superquenching result in elevated stress levels in the metallic core and reduced surface energy at the core-shell interface. Isomer-selective vacuum ultraviolet-based photoionization mass spectrometry coupled to a high-temperature chemical microreactor reveals that these stress-altered AlNPs (SA-AlNPs) exhibit distinctive temperature-dependent reactivities toward catalytic decomposition of the hydrocarbon jet fuel exo-tetrahydrodicyclopentadiene (JP-10, C10H16) compared to untreated AlNPs (UN-AlNPs). SA-AlNPs show a delayed initiation of the decomposition for JP-10 by 200 K relative to the UN-AlNPs; however, the full decomposition is achieved at a 100 K lower temperature. Furthermore, there are fewer oxygenated products that are generated from the alumina surface-induced heterogeneous oxidation process and a larger fraction of closed- and open-shell hydrocarbons. Chemical insight bridging the reactivity order of SA-AlNPs at low and high temperatures, simultaneously, is obtained via a detailed examination of the product branching ratios obtained in this study.

11.
Phys Chem Chem Phys ; 26(15): 11395-11405, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572584

RESUMEN

The initial decomposition pathways of α-FOX-7 in the condensed phase (crystal) were investigated via density functional theory. Calculations were carried out using three FOX-7 systems with increasing complexity from 1-layer (sheet) via 2-layer (surface) to 3-layer (bulk). The encapsulated environment of the central α-FOX-7 molecule, where decomposition takes place, is reconstructed by neighbouring molecules following a crystal structure. A minimal number of neighbouring molecules that have an impact on the energetics of decomposition are identified among all surrounding molecules. The results show that the presence of intermolecular hydrogen bonds due to the encapsulated environment in the condensed phase decreases the sensitivity of α-FOX-7, i.e. it increases the barrier of decomposition, but it does not alter the initial decomposition pathways of the reaction compared to the gas phase. Moreover, increasing the complexity of the system from a single gas phase molecule via sheet and surface to bulk increases the decomposition barriers. The calculations reveal a remarkable agreement with experimental data [A. M. Turner, Y. Luo, J. H. Marks, R. Sun, J. T. Lechner, T. M. Klapötke and R. I. Kaiser, Exploring the Photochemistry of Solid 1, 1-Diamino-2, 2-Dinitroethylene (FOX-7) Spanning Simple Bon Ruptures, Nitro-to-Nitrite Isomerization, and Nonadiabatic Dynamics, J. Phys. Chem. A, 2022, 126, 29, 4747-4761] and suggest that the initial decomposition of α-FOX-7 likely takes place at the surface of the crystal.

12.
Sci Adv ; 10(11): eadl3236, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478624

RESUMEN

Glyceric acid [HOCH2CH(OH)COOH]-the simplest sugar acid-represents a key molecule in biochemical processes vital for metabolism in living organisms such as glycolysis. Although critically linked to the origins of life and identified in carbonaceous meteorites with abundances comparable to amino acids, the underlying mechanisms of its formation have remained elusive. Here, we report the very first abiotic synthesis of racemic glyceric acid via the barrierless radical-radical reaction of the hydroxycarbonyl radical (HOCO) with 1,2-dihydroxyethyl (HOCHCH2OH) radical in low-temperature carbon dioxide (CO2) and ethylene glycol (HOCH2CH2OH) ices. Using isomer-selective vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, glyceric acid was identified in the gas phase based on the adiabatic ionization energies and isotopic substitution studies. This work reveals the key reaction pathways for glyceric acid synthesis through nonequilibrium reactions from ubiquitous precursor molecules, advancing our fundamental knowledge of the formation pathways of key biorelevant organics-sugar acids-in deep space.

13.
Phys Chem Chem Phys ; 26(7): 6448-6457, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38319693

RESUMEN

Exploiting the crossed molecular beam technique, we studied the reaction of the 1-propynyl radical (CH3CC; X2A1) with 2-methylpropene (isobutylene; (CH3)2CCH2; X1A1) at a collision energy of 38 ± 3 kJ mol-1. The experimental results along with ab initio and statistical calculations revealed that the reaction has no entrance barrier and proceeds via indirect scattering dynamics involving C7H11 intermediates with lifetimes longer than their rotation period(s). The reaction is initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density at the C1 and/or C2 position in 2-methylpropene. Further, the C7H11 intermediate formed from the C1 addition either emits atomic hydrogen or undergoes isomerization via [1,2-H] shift from the CH3 or CH2 group prior to atomic hydrogen loss preferentially leading to 1,2,4-trimethylvinylacetylene (2-methylhex-2-en-4-yne) as the dominant product. The molecular structures of the collisional complexes promote hydrogen atom loss channels. RRKM results show that hydrogen elimination channels dominate in this reaction, with a branching ratio exceeding 70%. Since the reaction of the 1-propynyl radical with 2-methylpropene has no entrance barrier, is exoergic, and all transition states involved are located below the energy of the separated reactants, bimolecular collisions are feasible to form trimethylsubstituted 1,3-enyne (p1) via a single collision event even at temperatures as low as 10 K prevailing in cold molecular clouds such as G+0.693. The formation of trimethylsubstituted vinylacetylene could serve as the starting point of fundamental molecular mass growth processes leading to di- and trimethylsubstituted naphthalenes via the HAVA mechanism.

14.
J Phys Chem A ; 128(9): 1665-1684, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38383985

RESUMEN

The oxidation of gas-phase exo-tetrahydrodicyclopentadiene (JP-10, C10H16) over aluminum nanoparticles (AlNP) has been explored between a temperature range of 300 and 1250 K with a novel chemical microreactor. The results are compared with those obtained from chemical microreactor studies of helium-seeded JP-10 and of helium-oxygen-seeded JP-10 without AlNP to gauge the effects of molecular oxygen and AlNP, respectively. Vacuum ultraviolet (VUV) photoionization mass spectrometry reveals that oxidative decomposition of JP-10 in the presence of AlNP is lowered by 350 and 200 K with and without AlNP, respectively, in comparison with pyrolysis of the fuel. Overall, 63 nascent gas-phase products are identified through photoionization efficiency (PIE) curves; these can be categorized as oxygenated molecules and their radicals as well as closed-shell hydrocarbons along with hydrocarbon radicals. Quantitative branching ratios of the products reveal diminishing yields of oxidized species and enhanced branching ratios of hydrocarbon species with the increase in temperature. While in the low-temperature regime (300-1000 K), AlNP solely acts as an efficient heat transfer medium, in the higher-temperature regime (1000-1250 K), chemical reactivity is triggered, facilitating the primary decomposition of the parent JP-10 molecule. This enhanced reactivity of AlNP could plausibly be linked to the exposed reactive surface of the aluminum (Al) core generated upon the rupture of the alumina shell material above the melting point of the metal (Al).

15.
Chem Commun (Camb) ; 60(11): 1404-1407, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174640

RESUMEN

A high temperature phenyl-mediated addition-cyclization-dehydrogenation mechanism to form peri-fused polycyclic aromatic hydrocarbon (PAH) derivatives-illustrated through the formation of dibenzo[e,l]pyrene (C24H14)-is explored through a gas-phase reaction of the phenyl radical (C6H5˙) with triphenylene (C18H12) utilizing photoelectron photoion coincidence spectroscopy (PEPICO) combined with electronic structure calculations. Low-lying vibrational modes of dibenzo[e,l]pyrene exhibit out-of-plane bending and are easily populated in high temperature environments such as combustion flames and circumstellar envelopes of carbon stars, thus stressing dibenzo[e,l]pyrene as a strong target for far-IR astronomical surveys.

16.
Chem Sci ; 15(4): 1480-1487, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38274079

RESUMEN

Hypergolic ionic liquids (HIL) - ionic liquids which ignite spontaneously upon contact with an oxidizer - emerged as green space propellants. Exploiting the previously marked hypergolic [EMIM][CBH] - WFNA (1-ethyl-3-methylimidazolium cyanoborohydride - white fuming nitric acid) system as a benchmark, through the utilization of a novel chirped-pulse droplet-merging technique in an ultrasonic levitation environment and electronic structure calculations, this work deeply questions the hypergolicity of the [EMIM][CBH]-WFNA system. Molecular oxygen is critically required for the [EMIM][CBH]-WFNA system to ignite spontaneously. State-of-the-art electronic structure calculations identified the resonantly stabilized N-boryl-N-oxo-formamide [(H3B-N(O)-CHO)-; BOFA] radical anion as the key intermediate in driving the oxidation chemistry upon reaction with molecular oxygen of the ionic liquid. These findings challenge conventional wisdom of 'well-established' test protocols as indicators of the hypergolicity of ionic liquids thus necessitating truly oxygen-free experimental conditions to define the ignition delay upon mixing of the ionic liquid and the oxidizer and hence designating an ionic liquid as truly hypergolic at the molecular level.

17.
J Phys Chem Lett ; 15(5): 1211-1217, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38272465

RESUMEN

Antiaromatic cyclobutadiene (c-C4H4) is the simplest prototype of [n]annulenes and a key reactive intermediate with significant ring strain, serving as the model compound for antiaromatic systems in organic chemistry. Here, we report the first bottom-up formation of cyclobutadiene in low-temperature acetylene (C2H2) ices exposed to energetic electrons. Cyclobutadiene was isolated and detected in the gas phase upon sublimation utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry along with ultraviolet photolysis studies. These findings advance our fundamental understanding of the exotic chemistry and preparation of highly strained antiaromatic cycles through non-equilibrium chemistry in interstellar environments, thus affording a possible route for the formation of highly strained molecules such as the hitherto elusive tetrahedrane (C4H4). Because acetylene is a major product of the photolysis and radiolysis of methane (CH4) ice, an abundant component of interstellar ices, our results suggest that cyclobutadiene can likely be formed in methane-rich ices of cold molecular clouds.

18.
Angew Chem Int Ed Engl ; 63(5): e202315147, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38072833

RESUMEN

The fundamental reaction pathways to the simplest dialkylsubstituted aromatics-xylenes (C6 H4 (CH3 )2 )-in high-temperature combustion flames and in low-temperature extraterrestrial environments are still unknown, but critical to understand the chemistry and molecular mass growth processes in these extreme environments. Exploiting crossed molecular beam experiments augmented by state-of-the-art electronic structure and statistical calculations, this study uncovers a previously elusive, facile gas-phase synthesis of xylenes through an isomer-selective reaction of 1-propynyl (methylethynyl, CH3 CC) with 2-methyl-1,3-butadiene (isoprene, C5 H8 ). The reaction dynamics are driven by a barrierless addition of the radical to the diene moiety of 2-methyl-1,3-butadiene followed by extensive isomerization (hydrogen shifts, cyclization) prior to unimolecular decomposition accompanied by aromatization via atomic hydrogen loss. This overall exoergic reaction affords a preparation of xylenes not only in high-temperature environments such as in combustion flames and around circumstellar envelopes of carbon-rich Asymptotic Giant Branch (AGB) stars, but also in low-temperature cold molecular clouds (10 K) and in hydrocarbon-rich atmospheres of planets and their moons such as Triton and Titan. Our study established a hitherto unknown gas-phase route to xylenes and potentially more complex, disubstituted benzenes via a single collision event highlighting the significance of an alkyl-substituted ethynyl-mediated preparation of aromatic molecules in our Universe.

20.
Proc Natl Acad Sci U S A ; 120(52): e2319167120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109557
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA