Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 32(2): 203-214.e4, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32413333

RESUMEN

Obesity is a top public health concern, and a molecule that safely treats obesity is urgently needed. Disulfiram (known commercially as Antabuse), an FDA-approved treatment for chronic alcohol addiction, exhibits anti-inflammatory properties and helps protect against certain types of cancer. Here, we show that in mice disulfiram treatment prevented body weight gain and abrogated the adverse impact of an obesogenic diet on insulin responsiveness while mitigating liver steatosis and pancreatic islet hypertrophy. Additionally, disulfiram treatment reversed established diet-induced obesity and metabolic dysfunctions in middle-aged mice. Reductions in feeding efficiency and increases in energy expenditure were associated with body weight regulation in response to long-term disulfiram treatment. Loss of fat tissue and an increase in liver fenestrations were also observed in rats on disulfiram. Given the potent anti-obesogenic effects in rodents, repurposing disulfiram in the clinic could represent a new strategy to treat obesity and its metabolic comorbidities.


Asunto(s)
Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Disulfiram/farmacología , Obesidad/tratamiento farmacológico , Animales , Dieta/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Cell Metab ; 29(1): 221-228.e3, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30197301

RESUMEN

The importance of dietary composition and feeding patterns in aging remains largely unexplored, but was implicated recently in two prominent nonhuman primate studies. Here, we directly compare in mice the two diets used in the primate studies focusing on three paradigms: ad libitum (AL), 30% calorie restriction (CR), and single-meal feeding (MF), which accounts for differences in energy density and caloric intake consumed by the AL mice. MF and CR regimes enhanced longevity regardless of diet composition, which alone had no significant impact within feeding regimens. Like CR animals, MF mice ate quickly, imposing periods of extended daily fasting on themselves that produced significant improvements in morbidity and mortality compared with AL. These health and survival benefits conferred by periods of extended daily fasting, independent of dietary composition, have major implications for human health and clinical applicability.


Asunto(s)
Restricción Calórica , Ayuno/psicología , Longevidad/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Cell Metab ; 27(3): 667-676.e4, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514072

RESUMEN

The role in longevity and healthspan of nicotinamide (NAM), the physiological precursor of NAD+, is elusive. Here, we report that chronic NAM supplementation improves healthspan measures in mice without extending lifespan. Untargeted metabolite profiling of the liver and metabolic flux analysis of liver-derived cells revealed NAM-mediated improvement in glucose homeostasis in mice on a high-fat diet (HFD) that was associated with reduced hepatic steatosis and inflammation concomitant with increased glycogen deposition and flux through the pentose phosphate and glycolytic pathways. Targeted NAD metabolome analysis in liver revealed depressed expression of NAM salvage in NAM-treated mice, an effect counteracted by higher expression of de novo NAD biosynthetic enzymes. Although neither hepatic NAD+ nor NADP+ was boosted by NAM, acetylation of some SIRT1 targets was enhanced by NAM supplementation in a diet- and NAM dose-dependent manner. Collectively, our results show health improvement in NAM-supplemented HFD-fed mice in the absence of survival effects.


Asunto(s)
Suplementos Dietéticos , Envejecimiento Saludable/metabolismo , Hígado , NAD/metabolismo , Niacinamida/farmacología , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Longevidad , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismo
4.
J Gerontol A Biol Sci Med Sci ; 73(1): 48-53, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-28977341

RESUMEN

For a century, we have known that caloric restriction influences aging in many species. However, only recently it was firmly established that the effect is not entirely dependent on the calories provided. Instead, rodent and nonhuman primate models have shown that the rate of aging depends on other variables, including the macronutrient composition of the diet, the amount of time spent in the restricted state, age of onset, the gender and genetic background, and the particular feeding protocol for the control group. The field is further complicated when attempts are made to compare studies across different laboratories, which seemingly contradict each other. Here, we argue that some of the contradictory findings are most likely due to methodological differences. This review focuses on the four methodological differences identified in a recent comparative report from the National Institute on Aging and University of Wisconsin nonhuman primate studies, namely feeding regimen, diet composition, age of onset, and genetics. These factors, that may be influencing the effects of a calorie restriction intervention, are highlighted in the rodent model to draw parallels and elucidate findings reported in a higher species, nonhuman primates.


Asunto(s)
Envejecimiento/fisiología , Restricción Calórica , Ingestión de Energía/fisiología , Longevidad/fisiología , Animales , Macaca mulatta , Modelos Animales , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...