Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38571321

RESUMEN

The postsynaptic density (PSD) is a collection of specialized proteins assembled beneath the postsynaptic membrane of dendritic spines. The PSD proteome comprises ~1000 proteins, including neurotransmitter receptors, scaffolding proteins and signalling enzymes. Many of these proteins have essential roles in synaptic function and plasticity. During brain development, changes are observed in synapse density and in the stability and shape of spines, reflecting the underlying molecular maturation of synapses. Synaptic protein composition changes in terms of protein abundance and the assembly of protein complexes, supercomplexes and the physical organization of the PSD. Here, we summarize the developmental alterations of postsynaptic protein composition during synapse maturation. We describe major PSD proteins involved in postsynaptic signalling that regulates synaptic plasticity and discuss the effect of altered expression of these proteins during development. We consider the abnormality of synaptic profiles and synaptic protein composition in the brain in neurodevelopmental disorders such as autism spectrum disorders. We also explain differences in synapse development between rodents and primates in terms of synaptic profiles and protein composition. Finally, we introduce recent findings related to synaptic diversity and nanoarchitecture and discuss their impact on future research. Synaptic protein composition can be considered a major determinant and marker of synapse maturation in normality and disease.

2.
PLoS Biol ; 22(3): e3002006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452102

RESUMEN

Proteome analyses of the postsynaptic density (PSD), a proteinaceous specialization beneath the postsynaptic membrane of excitatory synapses, have identified several thousands of proteins. While proteins with predictable functions have been well studied, functionally uncharacterized proteins are mostly overlooked. In this study, we conducted a comprehensive meta-analysis of 35 PSD proteome datasets, encompassing a total of 5,869 proteins. Employing a ranking methodology, we identified 97 proteins that remain inadequately characterized. From this selection, we focused our detailed analysis on the highest-ranked protein, FAM81A. FAM81A interacts with PSD proteins, including PSD-95, SynGAP, and NMDA receptors, and promotes liquid-liquid phase separation of those proteins in cultured cells or in vitro. Down-regulation of FAM81A in cultured neurons causes a decrease in the size of PSD-95 puncta and the frequency of neuronal firing. Our findings suggest that FAM81A plays a crucial role in facilitating the interaction and assembly of proteins within the PSD, and its presence is important for maintaining normal synaptic function. Additionally, our methodology underscores the necessity for further characterization of numerous synaptic proteins that still lack comprehensive understanding.


Asunto(s)
Separación de Fases , Proteoma , Proteoma/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Sinapsis/metabolismo , Membranas Sinápticas
3.
Nat Commun ; 15(1): 2496, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548776

RESUMEN

Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.


Asunto(s)
Fenómenos Biológicos , Callithrix , Animales , Ratones , Masculino , Proteoma/metabolismo , Proteómica , Sinapsis/metabolismo
4.
Angew Chem Int Ed Engl ; 62(4): e202216231, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36412996

RESUMEN

The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.


Asunto(s)
Aminoácidos , Péptidos , Animales , Ratones , Aminas , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Técnicas de Síntesis en Fase Sólida
5.
Angew Chem Weinheim Bergstr Ger ; 135(4): e202216231, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38515539

RESUMEN

The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.

6.
Cell Rep ; 33(10): 108477, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296658

RESUMEN

Autophagy is an intracellular degradation system, but its physiological functions in vertebrates are not yet fully understood. Here, we show that autophagy is required for inflation of air-filled organs: zebrafish swim bladder and mouse lung. In wild-type zebrafish swim bladder and mouse lung type II pulmonary epithelial cells, autophagosomes are formed and frequently fuse with lamellar bodies. The lamellar body is a lysosome-related organelle that stores a phospholipid-containing surfactant complex that lines the air-liquid interface and reduces surface tension. We find that autophagy is critical for maturation of the lamellar body. Accordingly, atg-deficient zebrafish fail to maintain their position in the water, and type-II-pneumocyte-specific Fip200-deficient mice show neonatal lethality with respiratory failure. Autophagy suppression does not affect synthesis of the surfactant phospholipid, suggesting that autophagy supplies lipids and membranes to lamellar bodies. These results demonstrate an evolutionarily conserved role of autophagy in lamellar body maturation.


Asunto(s)
Sacos Aéreos/metabolismo , Autofagia/fisiología , Pulmón/metabolismo , Sacos Aéreos/patología , Células Epiteliales Alveolares/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Células Epiteliales/metabolismo , Femenino , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Orgánulos/metabolismo , Surfactantes Pulmonares/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
7.
J Biochem ; 163(6): 447-455, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29415158

RESUMEN

Synaptic connections are essential for neural circuits in order to convey brain functions. The postsynaptic density (PSD) is a huge protein complex associated with postsynaptic membranes of excitatory synapses. In mammals, the PSD is composed of more than 1,000 proteins including receptors, scaffold proteins, signalling enzymes and cytoskeletal proteins. PSD proteins are crucial for synaptic transmission and plasticity. Proteomic studies have revealed the composition of PSD proteins in various species, brain regions and specific physiological conditions. Abnormalities with PSD proteins are linked to various neuropsychiatric diseases including neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. Here, we review different kinds of proteomic studies of the PSD and the involvement of PSD proteins in physiological and pathological conditions.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Animales , Humanos , Trastornos del Neurodesarrollo/patología , Proteómica
8.
Autophagy ; 13(4): 757-758, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28121224

RESUMEN

Macroautophagy is a catabolic process that delivers cytoplasmic components via the autophagosome to lysosomes for degradation. Measuring autophagic activity is critical to dissect molecular mechanisms and functions of autophagy but remains challenging due to the lack of a definitive method. We have recently developed a new fluorescent probe, GFP-LC3-RFP-LC3ΔG, to assess autophagic flux. Upon intracellular expression, the probe is cleaved by ATG4 family proteases into equimolar amounts of GFP-LC3 and RFP-LC3ΔG. The former is degraded by autophagy while the latter persists as an internal control in the cytosol. Autophagic flux can thus be quantified by obtaining the ratio of GFP:RFP signals. Using this method, we have identified several autophagy-modulating drugs by screening an approved drug library. We have also demonstrated that induced and basal autophagic flux can be monitored in zebrafish and mice.


Asunto(s)
Autofagia , Sondas Moleculares/química , Animales , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Pez Cebra
9.
Mol Cell ; 64(4): 835-849, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27818143

RESUMEN

Macroautophagy is an intracellular degradation system that utilizes the autophagosome to deliver cytoplasmic components to the lysosome. Measuring autophagic activity is critically important but remains complicated and challenging. Here, we have developed GFP-LC3-RFP-LC3ΔG, a fluorescent probe to evaluate autophagic flux. This probe is cleaved by endogenous ATG4 proteases into equimolar amounts of GFP-LC3 and RFP-LC3ΔG. GFP-LC3 is degraded by autophagy, while RFP-LC3ΔG remains in the cytosol, serving as an internal control. Thus, autophagic flux can be estimated by calculating the GFP/RFP signal ratio. Using this probe, we re-evaluated previously reported autophagy-modulating compounds, performed a high-throughput screen of an approved drug library, and identified autophagy modulators. Furthermore, we succeeded in measuring both induced and basal autophagic flux in embryos and tissues of zebrafish and mice. The GFP-LC3-RFP-LC3ΔG probe is a simple and quantitative method to evaluate autophagic flux in cultured cells and whole organisms.


Asunto(s)
Autofagia/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Lisosomas/efectos de los fármacos , Sondas Moleculares/genética , Fagosomas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Autofagia/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Sondas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fagosomas/metabolismo , Espectrometría de Fluorescencia , Ubiquitina-Proteína Ligasas , Pez Cebra
10.
Mol Cell Biol ; 36(4): 585-95, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26644405

RESUMEN

Autophagy is a major intracellular degradation system by which cytoplasmic components are enclosed by autophagosomes and delivered to lysosomes. Formation of the autophagosome requires a set of autophagy-related (Atg) proteins. Among these proteins, the ULK1 complex, which is composed of ULK1 (or ULK2), FIP200, Atg13, and Atg101, acts at an initial step. Previous studies showed that ULK1 and FIP200 also function in pathways other than autophagy. However, whether Atg13 and Atg101 act similarly to ULK1 and FIP200 remains unknown. In the present study, we generated Atg13 knockout mice. Like FIP200-deficient mice, Atg13-deficient mice die in utero, which is distinct from most other types of Atg-deficient mice. Atg13-deficient embryos show growth retardation and myocardial growth defects. In cultured fibroblasts, Atg13 deficiency blocks autophagosome formation at an upstream step. In addition, sensitivity to tumor necrosis factor alpha (TNF-α)-induced apoptosis is enhanced by deletion of Atg13 or FIP200, but not by other Atg proteins, as well as by simultaneous deletion of ULK1 and ULK2. These results suggest that Atg13 has both autophagic and nonautophagic functions and that the latter are essential for cardiac development and likely shared with FIP200 but not with ULK1/2.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Cardiopatías Congénitas/genética , Corazón/embriología , Ratones/embriología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Secuencia de Bases , Línea Celular , Eliminación de Gen , Cardiopatías Congénitas/metabolismo , Ratones/genética , Ratones/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Factor de Necrosis Tumoral alfa/metabolismo
11.
Autophagy ; 11(11): 2123-2124, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26389686

RESUMEN

The Atg1/ULK complex functions as the most upstream factor among Atg proteins to initiate autophagy. ATG101 is a constitutive component of the Atg1/ULK complex in most eukaryotes except for budding yeast, and plays an essential role in autophagy; however, the structure and functions of ATG101 were largely unknown. Recently, we determined the crystal structure of fission yeast Atg101 in complex with the closed HORMA domain of Atg13, revealing that Atg101 is also a HORMA protein with an open conformation. These 2 HORMA proteins play essential roles in autophagy initiation through recruiting downstream factors to the autophagosome formation site.

12.
Autophagy ; 11(9): 1471-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26213203

RESUMEN

Autophagy describes an intracellular process responsible for the lysosome-dependent degradation of cytosolic components. The ULK1/2 complex comprising the kinase ULK1/2 and the accessory proteins ATG13, RB1CC1, and ATG101 has been identified as a central player in the autophagy network, and it represents the main entry point for autophagy-regulating kinases such as MTOR and AMPK. It is generally accepted that the ULK1 complex is constitutively assembled independent of nutrient supply. Here we report the characterization of the ATG13 region required for the binding of ULK1/2. This binding site is established by an extremely short peptide motif at the C terminus of ATG13. This motif is mandatory for the recruitment of ULK1 into the autophagy-initiating high-molecular mass complex. Expression of a ULK1/2 binding-deficient ATG13 variant in ATG13-deficient cells resulted in diminished but not completely abolished autophagic activity. Collectively, we propose that autophagy can be executed by mechanisms that are dependent or independent of the ULK1/2-ATG13 interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Autofagia , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Homólogo de la Proteína 1 Relacionada con la Autofagia , Estabilidad de Enzimas , Fibroblastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/metabolismo , Fagosomas/metabolismo , Unión Proteica , Proteolisis , Proteína Sequestosoma-1
13.
Nat Struct Mol Biol ; 22(7): 572-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030876

RESUMEN

Atg101 is an essential component of the autophagy-initiating ULK complex in higher eukaryotes, but it is absent from the functionally equivalent Atg1 complex in budding yeast. Here, we report the crystal structure of the fission yeast Atg101-Atg13 complex. Atg101 has a Hop1, Rev7 and Mad2 (HORMA) architecture similar to that of Atg13. Mad2 HORMA has two distinct conformations (O-Mad2 and C-Mad2), and, intriguingly, Atg101 resembles O-Mad2 rather than the C-Mad2-like Atg13. Atg13 HORMA from higher eukaryotes possesses an inherently unstable fold, which is stabilized by Atg101 via interactions analogous to those between O-Mad2 and C-Mad2. Mutational studies revealed that Atg101 is responsible for recruiting downstream factors to the autophagosome-formation site in mammals via a newly identified WF finger. These data define the molecular functions of Atg101, providing a basis for elucidating the molecular mechanisms of mammalian autophagy initiation by the ULK complex.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Schizosaccharomyces/citología , Autofagia , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Mapas de Interacción de Proteínas , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
14.
J Cell Sci ; 126(Pt 22): 5224-38, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24013547

RESUMEN

Induction of autophagy requires the ULK1 protein kinase complex and the Vps34 lipid kinase complex. PtdIns3P synthesised by Vps34 accumulates in omegasomes, membrane extensions of the ER within which some autophagosomes form. The ULK1 complex is thought to target autophagosomes independently of PtdIns3P, and its functional relationship to omegasomes is unclear. Here we show that the ULK1 complex colocalises with omegasomes in a PtdIns3P-dependent way. Live-cell imaging of Atg13 (a ULK1 complex component), omegasomes and LC3 establishes and annotates for the first time a complete sequence of steps leading to autophagosome formation, as follows. Upon starvation, the ULK1 complex forms puncta associated with the ER and sporadically with mitochondria. If PtdIns3P is available, these puncta become omegasomes. Subsequently, the ULK1 complex exits omegasomes and autophagosomes bud off. If PtdIns3P is unavailable, ULK1 puncta are greatly reduced in number and duration. Atg13 contains a region with affinity for acidic phospholipids, required for translocation to punctate structures and autophagy progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Fosfatidilinositol 3-Quinasas Clase III/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Vacuolas/metabolismo
15.
EMBO Rep ; 14(3): 284-91, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23392225

RESUMEN

Autophagosome formation is a dynamic process that is strictly controlled by autophagy-related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14- and phosphatidylinositol 3-kinase-independent manner. Atg16L1 deletion mutants, which lack the FIP200-interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/química , Proteínas Portadoras/genética , Eliminación de Gen , Células HEK293 , Humanos , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
16.
J Biol Chem ; 285(26): 20109-16, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20427287

RESUMEN

Mammalian target of rapamycin (mTOR) is a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family and is a major regulator of translation, cell growth, and autophagy. mTOR exists in two distinct complexes, mTORC1 and mTORC2, that differ in their subunit composition. In this study, we identified KIAA0406 as a novel mTOR-interacting protein. Because it has sequence homology with Schizosaccharomyces pombe Tti1, we named it mammalian Tti1. Tti1 constitutively interacts with mTOR in both mTORC1 and mTORC2. Knockdown of Tti1 suppresses phosphorylation of both mTORC1 substrates (S6K1 and 4E-BP1) and an mTORC2 substrate (Akt) and also induces autophagy. S. pombe Tti1 binds to Tel2, a protein whose mammalian homolog was recently reported to regulate the stability of PIKKs. We confirmed that Tti1 binds to Tel2 also in mammalian cells, and Tti1 interacts with and stabilizes all six members of the PIKK family of proteins (mTOR, ATM, ATR, DNA-PKcs, SMG-1, and TRRAP). Furthermore, using immunoprecipitation and size-exclusion chromatography analyses, we found that knockdown of either Tti1 or Tel2 causes disassembly of mTORC1 and mTORC2. These results indicate that Tti1 and Tel2 are important not only for mTOR stability but also for assembly of the mTOR complexes to maintain their activities.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras/genética , Línea Celular , Cromatografía en Gel , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas , Proteínas Proto-Oncogénicas c-ets/genética , Interferencia de ARN , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Transfección
17.
Mol Biol Cell ; 20(7): 1981-91, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19211835

RESUMEN

Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable approximately 3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1-Atg13-FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1-Atg13-FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the approximately 3-MDa ULK1-Atg13-FIP200 complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminoácidos/farmacología , Autofagia/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/deficiencia , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/ultraestructura , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Peso Molecular , Complejos Multiproteicos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...