Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Anal Chem ; 95(50): 18335-18343, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064273

RESUMEN

Capillary-assisted flow is valuable for utilizing microfluidics-based electrical sensing platforms at on-site locations by simplifying microfluidic operations and system construction; however, incorporating capillary-assisted flow in platforms requires easy microfluidic modification and stability over time for capillary-assisted flow generation and sensing performance. Herein, we report a capillary-assisted microfluidics-based electrical sensing platform using a one-step modification of polydimethylsiloxane (PDMS) with polyethylene glycol (PEG). As a model of electrical sensing platforms, this work focused on resistive pulse sensing (RPS) using a micropore in a microfluidic chip for label-free electrical detection of single analytes, and filling the micropore with an electrolyte is the first step to perform this RPS. The PEG-PDMS surfaces remained hydrophilic after ambient storage for 30 d and assisted in generating an electrolyte flow for filling the micropore with the electrolyte. We demonstrated the successful detection and size analysis of micrometer particles and bacterial cells based on RPS using the microfluidic chip stored in a dry state for 30 d. Combining this capillary-assisted microfluidic platform with a portable RPS system makes on-site detection and analysis of single pathogens possible.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Diseño de Equipo , Dimetilpolisiloxanos , Electrólitos
2.
Sci Rep ; 13(1): 13322, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587179

RESUMEN

Arrays of small reaction containers, ranging from 624 femtoliters (10-15 L) to 270 attoliters (10-18 L), for capturing a single enzyme molecule and measuring the activity were developed along with a new reversible sealing system based on a pneumatic valve actuator made of polydimethylsiloxane (PDMS). The valve was actuated by PBS solution, effectively preventing evaporation of the solution from the micro- and nanochambers and allowing the assay to be performed over a long period of time. The hydrolysis rates of ß-D-galactosidase (ß-gal), kcat, were decreased according to the decrease of the chamber size, and the overall tendency seems to be symmetrically related to the specific surface area of the chambers even under the prevented condition of non-specific adsorption. The spatial localization of the protons in the chambers, which might could affect the dissociation state of the proteins, was also investigated to explain the decrease in the hydrolysis rate. The developed chamber system developed here may be useful for artificially reproducing the confined intracellular environment and molecular crowding conditions.


Asunto(s)
Dispositivos Laboratorio en un Chip , beta-Galactosidasa/metabolismo , Cinética , Pruebas de Enzimas
3.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375188

RESUMEN

Immunoassays, which use antigen-antibody reactions, are the primary techniques used to selectively quantify specific disease markers in blood. Conventional immunoassays, such as the microplate-based enzyme-linked immunosorbent assay (ELISA) and paper-based immunochromatography, are widely used, but they have advantages and disadvantages in terms of sensitivity and operating time. Therefore, in recent years, microfluidic-chip-based immunoassay devices with high sensitivity, rapidity and simplicity, which are compatible with whole blood assays and multiplex assays, have been actively investigated. In this study, we developed a microfluidic device using gelatin methacryloyl (GelMA) hydrogel to form a wall-like structure in a microfluidic channel and perform immunoassays inside the wall-like structure, which can be used for rapid and highly sensitive multiplex assays with extremely small sample amounts of ~1 µL. The characteristics of GelMA hydrogel, such as swelling rate, optical absorption and fluorescence spectra, and morphology, were carefully studied to adapt the iImmunowall device and immunoassay. Using this device, a quantitative analysis of interleukin-4 (IL-4), a biomarker of chronic inflammatory diseases, was performed and a limit of detection (LOD) of 0.98 ng/mL was achieved with only 1 µL sample and 25 min incubation time. The superior optical transparency over a wide range of wavelengths and lack of autofluorescence will help to expand the application field of the iImmunowall device, such as to a simultaneous multiple assay in a single microfluidic channel, and provide a fast and cost-effective immunoassay method.


Asunto(s)
Interleucina-4 , Técnicas Analíticas Microfluídicas , Hidrogeles/química , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo/métodos , Gelatina , Dispositivos Laboratorio en un Chip
4.
Anal Sci ; 39(5): 705-712, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36738404

RESUMEN

Reactive oxygen species are known to be involved in various diseases, and antioxidant ingredients are expected to essentially prevent diseases and contribute to improving health. However, antioxidants are easily degraded by enzymes before being absorbed in the intestine, so a means of transport that prevents their degradation in the body is necessary. Exosomes, which play an important role in communication between individual cells, have attracted attention as a new transport carrier of miRNA and DNA, but not yet fully exploited in food research. More recently, exosomes extracted from bovine milk began to be widely used as a cost-effective transport carrier not in clinical medicine but also in functional food materials. To develop practical applications as carriers for functional foods, systematic studies are necessary to clarify the introduction efficiency and the properties of encapsulated substances. In this study, we applied electroporation and incubation to encapsulate antioxidants into the exosomes and studied the encapsulation efficiency into the exosomes and the anticancer activity.


Asunto(s)
Exosomas , MicroARNs , Animales , Leche/química , Exosomas/química , Alimentos Funcionales , Antioxidantes/farmacología , Antioxidantes/análisis , MicroARNs/análisis
5.
Analyst ; 147(7): 1375-1384, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35230361

RESUMEN

The effects of increased confinement on the catalytic rates of individual enzyme molecules were studied at the single molecule level using femtolitre chambers and molecular crowders. According to the increase of confinement, from micro to nanometer cubic space in the chambers, the hydrolysis rate of ß-galactosidase (ß-gal) decreased to one-tenth of the rate in bulk. When molecular crowders suppressed the diffusion rates that reduced the collision chance of an enzyme and a substrate, the hydrolysis rate also decreased, which happened also in the case of femtolitre chambers. However, their kinetic trend was different especially from the viewpoint of the diffusion rates in diffusion-limited space. These data suggested that cell or organelle-scale confined environments might affect the kinetics of biochemical reactions and emphasized the importance of understanding enzyme kinetics in the in vivo environment.


Asunto(s)
Nanotecnología , Difusión , Hidrólisis , Cinética , beta-Galactosidasa/metabolismo
6.
Micromachines (Basel) ; 12(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832765

RESUMEN

This study developed low-cost and highly sensitive immunoassay devices possessing the ability to rapidly analyze urine samples. Further, they can quantitatively detect three biomarkers indicating renal injury: monocyte chemotactic protein 1 (MCP-1), angiotensinogen (AGT), and liver-type fatty acid binding protein (L-FABP). The devices were used to successfully estimate the concentrations of the three biomarkers in urine samples within 2 min; the results were consistent with those obtained via conventional enzyme-linked immunosorbent assay (ELISA), which requires several hours. In addition, the estimated detection limits for the three biomarkers were comparable to those of commercially available ELISA kits. Thus, the proposed and fabricated devices facilitate high-precision and frequent monitoring of renal function.

7.
Anal Chem ; 93(43): 14409-14416, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34628861

RESUMEN

The mechanical phenotype of cells is an intrinsic property of individual cells. In fact, this property could serve as a label-free, non-destructive, diagnostic marker of the state of cells owing to its remarkable translational potential. A microfluidic device is a strong candidate for meeting the demand of this translational research as it can be used to diagnose a large population of cells at a single cell level in a high-throughput manner, without the need for off-line pretreatment operations. In this study, we investigated the mechanical phenotype of the human colon adenocarcinoma cell, HT29, which is known to be a heterogeneous cell line with both multipotency and self-renewal abilities. This type of cancer stem-like cell (CSC) is believed to be the unique originators of all tumor cells and may serve as the leading cause of cancer metastasis and drug resistance. By combining consecutive constrictions and microchannels with an ionic current sensing system, we found a high heterogeneity of cell deformability in the population of HT29 cells. Moreover, based on the level of aldehyde dehydrogenase (ALDH) activity and the expression level of CD44s, which are biochemical markers that suggest the multipotency of cells, the high heterogeneity of cell deformability was concluded to be a potential mechanical marker of CSCs. The development of label-free and non-destructive identification and collection techniques for CSCs has remarkable potential not only for cancer diagnosis and prognosis but also for the discovery of a new treatment for cancer.


Asunto(s)
Neoplasias del Colon , Dispositivos Laboratorio en un Chip , Células Madre Neoplásicas , Línea Celular Tumoral , Células HT29 , Humanos , Microfluídica , Neoplasias , Pronóstico
8.
Biosens Bioelectron ; 194: 113589, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34543824

RESUMEN

Extracellular vesicles (EVs) have shown promising features as biomarkers for early cancer diagnoses. The outer layer of cancer cell-derived EVs consists of organotropic metastasis-induced membrane proteins and specifically enriched proteoglycans, and these molecular compositions determine EV surface charge. Although many efforts have been devoted to investigating the correlation between EV subsets obtained through density-, size-, and immunoaffinity-based captures and expressed membrane proteins, understanding the correlation between EV subsets obtained through surface charge-based capture and expressed membrane proteins is lacking. Here, we propose a methodology to profile membrane proteins of EV subsets obtained through surface charge-based capture. Nanowire-induced charge-based capture of EVs and in-situ profiling of EV membrane proteins are the two key methodology points. The oxide nanowires allowed EVs to be obtained through surface charge-based capture due to the diverse isoelectric points of the oxides and the large surface-to-volume ratios of the nanowire structures. And, with the ZnO nanowire device, whose use does not require any purification and concentration processes, we demonstrated the correlation between negatively-charged EV subsets and expressed membrane proteins derived from each cell. Furthermore, we determined that a colon cancer related membrane protein was overexpressed on negatively charged surface EVs derived from colon cancer cells.


Asunto(s)
Técnicas Biosensibles , Vesículas Extracelulares , Nanocables , Microfluídica , Óxidos
9.
Anal Chem ; 93(18): 7037-7044, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33908760

RESUMEN

A rapid and simple cancer detection method independent of cancer type is an important technology for cancer diagnosis. Although the expression profiles of biological molecules contained in cancer cell-derived extracellular vesicles (EVs) are considered candidates for discrimination indexes to identify any cancerous cells in the body, it takes a certain amount of time to examine these expression profiles. Here, we report the shape distributions of EVs suspended in a solution and the potential of these distributions as a discrimination index to discriminate cancer cells. Distribution analysis is achieved by low-aspect-ratio nanopore devices that enable us to rapidly analyze EV shapes individually in solution, and the present results reveal a dependence of EV shape distribution on the type of cells (cultured liver, breast, and colorectal cancer cells and cultured normal breast cells) secreting EVs. The findings in this study provide realizability and experimental basis for a simple method to discriminate several types of cancerous cells based on rapid analyses of EV shape distributions.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Línea Celular , Células Cultivadas , Humanos
10.
Nanotechnology ; 32(25)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33725670

RESUMEN

Detection of cell-free DNA (cfDNA) has an impact on DNA analysis in liquid biopsies. However, current strategies to detect cfDNA have limitations that should be overcome, such as having low sensitivity and requiring much time and a specialized instrument. Thus, non-invasive and rapid detection tools are needed for disease prevention and early-stage treatment. Here we developed a device having a microheater integrated with zinc oxide nanowires (microheater-ZnO-NWs) to detect target single-stranded DNAs (ssDNAs) based on DNA probe hybridization. We confirmed experimentally that our device realizedin-situannealed DNA probes by which we subsequently detected target ssDNAs. We envision that this device can be utilized for fundamental studies related to nanobiodevice-based DNA detection.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos Libres de Células/análisis , ADN de Cadena Simple/análisis , Dispositivos Laboratorio en un Chip , Nanocables/química , Óxido de Zinc/química , Sondas de ADN/química , Humanos , Límite de Detección , Biopsia Líquida/métodos , Hibridación de Ácido Nucleico/métodos
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119021, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33045480

RESUMEN

In this study, a facile, sensitive, and precise lab-on-a-chip electrophoretic method coupled with light-emitting diode induced fluorescence (LED-IF) detection was developed to assay three antiepileptic drugs, namely, vigabatrin, pregabalin, and gabapentin, in pharmaceutical formulations. The analytes were derivatised offline for the first time with fluorescine-5-isothiocyanate (FITC) to yield highly fluorescent derivatives with λex/em of 490/520nm. The FITC-labelled analytes were injected, separated, and quantitated by a microfluidic electrophoresis device using fluorescence detection. The labelled analytes were monitored using a blue LED-IF system. The separation conditions were significantly optimised adding specific concentrations of heptakis-(2,6-di-O-methyl)-ß-cyclodextrin (HDM-ß-CD) and methylcellulose to the buffer solution (40mM borate buffer). HDM-ß-CD acted as a selective host for the studied antiepileptic drugs, rendering a high separation efficiency. Methylcellulose was used as an efficient dynamic coating polymer to prevent the labelled drugs from being adsorbed on the inner surfaces of the poly (methylmethacrylate) microchannels. A laboratory-prepared ternary mixture of the three antiepileptic drugs was separated within 100s with acceptable resolution between all the three analytes (Rs>3) and a high number of theoretical plates (N) for each analyte (N≈106 plates/m). The sensitivity of the method was enhanced approximately 80-fold by stacking to yield a detection limit below 0.6ngmL-1 in the concentration range of 2.0-200.0ngmL-1. The method was successfully validated for analysing the studied drugs in their pharmaceutical formulations.


Asunto(s)
Anticonvulsivantes , Microfluídica , Composición de Medicamentos , Pregabalina , Espectrometría de Fluorescencia
12.
PLoS One ; 15(11): e0241422, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33196648

RESUMEN

Detecting molecular targets in specimens from patients with lung cancer is essential for targeted therapy. Recently, we developed a highly sensitive, rapid-detection device (an immuno-wall device) that utilizes photoreactive polyvinyl alcohol immobilized with antibodies against a target protein via a streptavidin-biotin interaction. To evaluate its performance, we assayed epidermal growth factor receptor (EGFR) mutations, such as E746_A750 deletion in exon 19 or L858R substitution in exon 21, both of which are common in non-small cell lung cancer and important predictors of the treatment efficacy of EGFR tyrosine kinase inhibitors. The results showed that in 20-min assays, the devices detected as few as 1% (E746_A750 deletion) and 0.1% (L858R substitution) of mutant cells. Subsequent evaluation of detection of the mutations in surgically resected lung cancer specimens from patients with or without EGFR mutations and previously diagnosed using commercially available, clinically approved genotyping assays revealed diagnostic sensitivities of the immuno-wall device for E746_A750 deletion and L858R substitution of 85.7% and 87.5%, respectively, with specificities of 100% for both mutations. These results suggest that the immuno-wall device represents a good candidate next-generation diagnostic tool, especially for screening of EGFR mutations.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , Neoplasias Pulmonares/genética , Mutación/genética , Calibración , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/inmunología , Fluorescencia , Genotipo , Humanos , Inmunoensayo
13.
Micromachines (Basel) ; 11(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599748

RESUMEN

There are growing interests in mechanical rupture-based antibacterial surfaces with nanostructures that have little toxicity to cells around the surfaces; however, current surfaces are fabricated via top-down nanotechnologies, which presents difficulties to apply for bio-surfaces with hierarchal three-dimensional structures. Herein, we developed ZnO/SiO2 nanowire structures by using bottom-up approaches and demonstrated to show mechanical rupture-based antibacterial activity and compatibility with human cells. When Escherichia coli were cultured on the surface for 24 h, over 99% of the bacteria were inactivated, while more than 80% of HeLa cells that were cultured on the surface for 24 h were still alive. This is the first demonstration of mechanical rupture-based bacterial rupture via the hydrothermally synthesized nanowire structures with antibacterial activity and cell compatibility.

14.
Anal Chem ; 92(13): 9132-9137, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483963

RESUMEN

Conformational transitions from secondary (e.g., B- to A-form DNA) to higher-order (e.g., coil to globule) transitions play important roles in genome expression and maintenance. Several single-molecule approaches using microfluidic devices have been used to determine the kinetics of DNA chromatin assembly because microfluidic devices can afford stretched DNA molecules through laminar flow and rapid solution exchange. However, some issues, particularly the uncertainty of time 0 in the solution exchange process, are encountered. In such kinetic experiments, it is critical to determine when the target solution front approaches the target DNA molecules. Therefore, a new design for a microfluidic device is developed that enables the instantaneous exchange of solutions in the observation channel, allowing accurate measurements of DNA conformational transitions; stepwise, ethanol-induced conformational transitions are revealed. Although full DNA contraction from coil to globule is observed with >50% ethanol, no outstanding change is observed at concentrations <40% in 10 min. With 50% ethanol solution, the DNA conformational transition passes through two steps: (i) fast and constant-velocity contraction and (ii) relatively slow contraction from the free end. The first process is attributed to the B to A conformational transition by gradual dehydration. The second process is due to the coil-globule transition as the free end of DNA starts the contraction. This globular structure formation counteracts the shear force from the microfluids and decelerates the contraction velocity. This real-time observation system can be applied to the kinetic analysis of DNA conformational transitions such as kinetics of chromatin assembly and gene expression.


Asunto(s)
ADN/química , Etanol/química , Dispositivos Laboratorio en un Chip , Conformación de Ácido Nucleico , Transición de Fase
15.
Anal Chem ; 92(3): 2483-2491, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31922717

RESUMEN

The detection of circulating tumor cells (CTCs) from liquid biopsies using microfluidic devices is attracting a considerable amount of attention as a new, less-invasive cancer diagnostic and prognostic method. One of the drawbacks of the existing antibody-based detection systems is the false negatives for epithelial cell adhesion molecule detection of CTCs. Here we report a mechanical low-pass filtering technique based on a microfluidic constriction and electrical current sensing system for the novel CTC detection in whole blood without any specific antigen-antibody interaction or biochemical modification of the cell surface. The mechanical response of model cells of CTCs, such as HeLa, A549, and MDA-MB-231 cells, clearly demonstrated different behaviors from that of Jurkat cells, a human T-lymphocyte cell line, when they passed through the 6-µm wide constriction channel. A 6-µm wide constriction channel was determined as the optimum size to identify CTCs in whole blood with an accuracy greater than 95% in tens of milliseconds. The mechanical filtering of cells at a single cell level was achieved from whole blood without any pretreatment (e.g., dilution of lysing) and prelabeling (e.g., fluorophores or antibodies).


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes/patología , Células A549 , Molécula de Adhesión Celular Epitelial/análisis , Células HeLa , Humanos , Células Tumorales Cultivadas
16.
Anal Chem ; 91(20): 12890-12899, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442026

RESUMEN

The mechanical properties of a cell, which include parameters such as elasticity, inner pressure, and tensile strength, are extremely important because changes in these properties are indicative of diseases ranging from diabetes to malignant transformation. Considering the heterogeneity within a population of cancer cells, a robust measurement system at the single cell level is required for research and in clinical purposes. In this study, a potential microfluidic device for high-throughput and practical mechanotyping were developed to investigate the deformability and sizes of cells through a single run. This mechanotyping device consisted of two different sizes of consecutive constrictions in a microchannel and measured the size of cells and related deformability during transit. Cell deformability was evaluated based on the transit and on the effects of cytoskeleton-affecting drugs, which were detected within 50 ms. The mechanotyping device was able to also measure a cell cycle without the use of fluorescent or protein tags.


Asunto(s)
Forma de la Célula , Citoesqueleto/patología , Técnicas Analíticas Microfluídicas/métodos , Neoplasias/patología , Análisis de la Célula Individual/métodos , Antineoplásicos/farmacología , Fenómenos Biomecánicos , Ciclo Celular , Citoesqueleto/efectos de los fármacos , Elasticidad , Electricidad , Fricción , Células HeLa , Humanos , Células Jurkat , Técnicas Analíticas Microfluídicas/instrumentación
17.
ACS Nano ; 13(7): 8155-8168, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31244030

RESUMEN

Histones are basic protein monomers capable of interacting with DNA, providing the mechanism of DNA compaction inside the cell nucleus. The well-ordered assembly process of histone and DNA is a potential candidate as the approach for building DNA-protein nanostructures. Here, utilizing the sequence-independent histone-DNA interaction, we present an approach to self-assemble histones and single-stranded DNA (ssDNA) to form well-defined histone-DNA (sHD) nanoparticles and their multidimensional cross-linked complexes (cHD). By using various molecular biology and microscopy techniques, we elucidate the structure of these complexes, and we show that they are formed at carefully controlled conditions of temperature, ionic strength, concentration, and incubation time. We also demonstrate using a set of ssDNA molecular rulers and a geometric accommodation model that the assembly of sHD and cHD particles proceeds with precise geometry so that the number of ssDNA in these particles can be programmed by the length of ssDNA. We further show that the formation of cHD amplifies the effect of the length of ssDNA on the self-assembly, allowing for distinguishing ssDNA of different lengths at single nucleotide resolution. We envision that our geometry-directed approach of self-assembling histone-DNA nanostructures and the fundamental insights can serve as a structural platform to advance building precisely ordered DNA-protein nanostructures.


Asunto(s)
ADN/química , Histonas/química , Nanoestructuras/química , Conformación de Ácido Nucleico , Tamaño de la Partícula , Sacarosa/química , Propiedades de Superficie
18.
Anal Chem ; 91(10): 6514-6521, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31035752

RESUMEN

Micro- and nanopillar chips are widely used to separate and enrich biomolecules, such as DNA, RNA, protein, and cells, as an analytical technique and to provide a confined nanospace for polymer science analyses. Herein, we demonstrated a continuous accurate and precise separation technique for extracellular vesicles (EVs), nanometer-sized vesicles (typically 50-200 nm) currently recognized as novel biomarkers present in biofluids, based on the principle of electroosmotic flow-driven deterministic lateral displacement in micro- and nanopillar array chips. Notably, the easy-to-operate flow control afforded by electroosmotic flow allowed nanoparticles 50-500 nm in size, including EVs, to be precisely separated and enriched in a continuous manner. By observation of the flow behavior of nanoparticles, we found that electroosmotic flow velocity in the nanopillar arrays did not solely depend on counterion mobility on the surface of nanopillar chips, but rather showed a parabolic flow profile. This hydrodynamic pressure-free and easy-to-use separation and enrichment technique, which requires only electrode insertion into the reservoirs and electric field application, may thus serve as a promising technique for future precise and accurate EV analysis, reflecting both size and composition for research and potential clinical diagnostic applications.


Asunto(s)
Vesículas Extracelulares/química , Dispositivos Laboratorio en un Chip , Fluorescencia , Nanoestructuras , Poliestirenos
19.
ACS Nano ; 13(2): 2262-2273, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30758938

RESUMEN

Researchers have demonstrated great promise for inorganic nanowire use in analyzing cells or intracellular components. Although a stealth effect of nanowires toward cell surfaces allows preservation of the living intact cells when analyzing cells, as a completely opposite approach, the applicability to analyze intracellular components through disrupting cells is also central to understanding cellular information. However, the reported lysis strategy is insufficient for microbial cell lysis due to the cell robustness and wrong approach taken so far ( i. e., nanowire penetration into a cell membrane). Here we propose a nanowire-mediated lysis method for microbial cells by introducing the rupture approach initiated by cell membrane stretching; in other words, the nanowires do not penetrate the membrane, but rather they break the membrane between the nanowires. Entangling cells with the bacteria-compatible and flexible nanowires and membrane stretching of the entangled cells, induced by the shear force, play important roles for the nanowire-mediated lysis to Gram-positive and Gram-negative bacteria and yeast cells. Additionally, the nanowire-mediated lysis is readily compatible with the loop-mediated isothermal amplification (LAMP) method because the lysis is triggered by simply introducing the microbial cells. We show that an integration of the nanowire-mediated lysis with LAMP provides a means for a simple, rapid, one-step identification assay (just introducing a premixed solution into a device), resulting in visual chromatic identification of microbial cells. This approach allows researchers to develop a microfluidic analytical platform not only for microbial cell identification including drug- and heat-resistance cells but also for on-site detection without any contamination.


Asunto(s)
Bacterias Gramnegativas/citología , Bacterias Grampositivas/citología , Nanocables/química , Saccharomyces cerevisiae/citología , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...