Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(1): 104-117, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223279

RESUMEN

Plants produce a large variety of lipophilic metabolites, many of which are secreted by cells and accumulated in apoplasts. These compounds often play a role to protect plants from environmental stresses. However, little is known about how these lipophilic compounds are secreted into apoplastic spaces. In this study, we used shikonin-producing cultured cells of Lithospermum erythrorhizon as an experimental model system to analyze the secretion of lipophilic metabolites, taking advantage of its high production rate and the clear inducibility in culture. Shikonin derivatives are lipophilic red naphthoquinone compounds that accumulate exclusively in apoplastic spaces of these cells and also in the root epidermis of intact plants. Microscopic analysis showed that shikonin is accumulated in the form of numerous particles on the cell wall. Lipidomic analysis showed that L. erythrorhizon cultured cells secrete an appreciable portion of triacylglycerol (24-38% of total triacylglycerol), composed predominantly of saturated fatty acids. Moreover, in vitro reconstitution assay showed that triacylglycerol encapsulates shikonin derivatives with phospholipids to form lipid droplet-like structures. These findings suggest a novel role for triacylglycerol as a matrix lipid, a molecular component involved in the secretion of specialized lipophilic metabolites.


Asunto(s)
Naftoquinonas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Naftoquinonas/metabolismo , Lípidos
2.
Plant Cell Physiol ; 63(8): 1063-1077, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35674121

RESUMEN

Plant growth and development are regulated by environmental factors, including nutrient availability and light conditions, via endogenous genetic signaling pathways. Phosphorylation-dependent protein modification plays a major role in the regulation of cell proliferation in stress conditions, and several protein kinases have been shown to function in response to nutritional status, including dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). Although DYRKs are widely conserved in eukaryotes, the physiological functions of DYRKs in land plants are still to be elucidated. In the liverwort Marchantia polymorpha, a model bryophyte, four putative genes encoding DYRK homologous proteins, each of which belongs to the subfamily yet another kinase 1 (Yak1), plant-specific DYRK, DYRK2, or pre-mRNA processing protein 4 kinase, were identified. MpYAK1-defective male and female mutant lines generated by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system showed smaller sizes of thalli than did the wild-type plants and repressed cell divisions in the apical notch regions. The Mpyak1 mutants developed rhizoids from gemmae in the gemma cup before release. The Mpyak1 lines developed sexual organs even in non-inductive short-day photoperiod conditions supplemented with far-red light. In nitrogen (N)-deficient conditions, rhizoid elongation was inhibited in the Mpyak1 mutants. In conditions of aeration with 0.08% CO2 (v/v) and N depletion, Mpyak1 mutants accumulated higher levels of sucrose and lower levels of starch compared to the wild type. Transcriptomic analyses revealed that the expression of peroxidase genes was differentially affected by MpYAK1. These results suggest that MpYAK1 is involved in the maintenance of plant growth and developmental responses to light conditions and nutrient signaling.


Asunto(s)
Marchantia , División Celular , Marchantia/metabolismo , Nutrientes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo
3.
Plant Cell ; 34(2): 910-926, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893905

RESUMEN

Photosynthetic organisms are exposed to various environmental sources of oxidative stress. Land plants have diverse mechanisms to withstand oxidative stress, but how microalgae do so remains unclear. Here, we characterized the Chlamydomonas reinhardtii basic leucine zipper (bZIP) transcription factor BLZ8, which is highly induced by oxidative stress. Oxidative stress tolerance increased with increasing BLZ8 expression levels. BLZ8 regulated the expression of genes likely involved in the carbon-concentrating mechanism (CCM): HIGH-LIGHT ACTIVATED 3 (HLA3), CARBONIC ANHYDRASE 7 (CAH7), and CARBONIC ANHYDRASE 8 (CAH8). BLZ8 expression increased the photosynthetic affinity for inorganic carbon under alkaline stress conditions, suggesting that BLZ8 induces the CCM. BLZ8 expression also increased the photosynthetic linear electron transfer rate, reducing the excitation pressure of the photosynthetic electron transport chain and in turn suppressing reactive oxygen species (ROS) production under oxidative stress conditions. A carbonic anhydrase inhibitor, ethoxzolamide, abolished the enhanced tolerance to alkaline stress conferred by BLZ8 overexpression. BLZ8 directly regulated the expression of the three target genes and required bZIP2 as a dimerization partner in activating CAH8 and HLA3. Our results suggest that a CCM-mediated increase in the CO2 supply for photosynthesis is critical to minimize oxidative damage in microalgae, since slow gas diffusion in aqueous environments limits CO2 availability for photosynthesis, which can trigger ROS formation.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carbono/metabolismo , Chlamydomonas reinhardtii/fisiología , Estrés Oxidativo/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Anhidrasas Carbónicas/metabolismo , Chlamydomonas reinhardtii/citología , Regulación de la Expresión Génica , Peroxidación de Lípido , Estrés Oxidativo/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
J Plant Res ; 134(6): 1265-1277, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34549353

RESUMEN

Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) are activated via the auto-phosphorylation of conserved tyrosine residues in their activation loop during protein translation, and they then phosphorylate serine/threonine residues on substrates. The DYRK family is widely conserved in eukaryotes and is composed of six subgroups. In plant lineages, DYRK homologs are classified into four subgroups, DYRK2s, yet another kinase1s, pre-mRNA processing factor 4 kinases, and DYRKPs. Only the DYRKP subgroup is plant-specific and has been identified in a wide array of plant lineages, including land plants and green algae. It has been suggested that in Arabidopsis thaliana DYRKPs are involved in the regulation of centripetal nuclear positioning induced by dark light conditions. However, the molecular functions, such as kinase activity and the developmental and physiological roles of DYRKPs are poorly understood. Here, we focused on a sole DYRKP ortholog in the model bryophyte, Marchantia polymorpha, MpDYRKP. MpDYRKP has a highly conserved kinase domain located in the C-terminal region and shares common sequence motifs in the N-terminal region with other DYRKP members. To identify the roles of MpDYRKP in M. polymorpha, we generated loss-of-function Mpdyrkp mutants via genome editing. Mpdyrkp mutants exhibited abnormal, shrunken morphologies with less flattening in their vegetative plant bodies, thalli, and male reproductive organs, antheridial receptacles. The surfaces of the thalli in the Mpdyrkp mutants appeared uneven and disordered. Moreover, their epidermal cells were drastically altered to a narrower shape when compared to the wild type. These results suggest that MpDYRKP acts as a morphological regulator, which contributes to orderly tissue morphogenesis via the regulation of cell shape.


Asunto(s)
Arabidopsis , Marchantia , Arabidopsis/genética , Marchantia/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
5.
Nat Commun ; 11(1): 3452, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651381

RESUMEN

The advent of image-activated cell sorting and imaging-based cell picking has advanced our knowledge and exploitation of biological systems in the last decade. Unfortunately, they generally rely on fluorescent labeling for cellular phenotyping, an indirect measure of the molecular landscape in the cell, which has critical limitations. Here we demonstrate Raman image-activated cell sorting by directly probing chemically specific intracellular molecular vibrations via ultrafast multicolor stimulated Raman scattering (SRS) microscopy for cellular phenotyping. Specifically, the technology enables real-time SRS-image-based sorting of single live cells with a throughput of up to ~100 events per second without the need for fluorescent labeling. To show the broad utility of the technology, we show its applicability to diverse cell types and sizes. The technology is highly versatile and holds promise for numerous applications that are previously difficult or undesirable with fluorescence-based technologies.


Asunto(s)
Separación Celular/métodos , Espectrometría Raman/métodos , Animales , Humanos
6.
Front Plant Sci ; 11: 36, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117375

RESUMEN

Autophagy is a mechanism to recycle intracellular constituents such as amino acids and other carbon- and nitrogen (N)-containing compounds. Although autophagy-related (ATG) genes required for autophagy are encoded by many algal genomes, their functional importance in microalgae in nutrient-deficiency has not been appraised using ATG-defective mutants. Recently, by characterization of an insertional mutant of the ATG8 encoding a ubiquitin-like protein indispensable for autophagosome formation in a green alga Chlamydomonas reinhardtii, we have provided evidence that supports the following notions. ATG8 protein is required for the degradation of lipid droplets and triacylglycerol (TAG) triggered by resupply of N to cell culture in N-deficient conditions. ATG8 protein is also necessary for starch accumulation under phosphorus-deficient conditions. Algal autophagy is not necessary for inheritance of chloroplast and mitochondrial genomes. In this review, we discuss the physiological roles of algal autophagy associated with nutrient deficiency revealed by the genetic and biochemical analyses using disruption mutants and reagents that inhibit the fatty acid biosynthesis and vacuolar H+-ATPase.

7.
Curr Biol ; 29(20): 3525-3531.e7, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31607537

RESUMEN

Many plants can reproduce vegetatively, producing clonal progeny from vegetative cells; however, little is known about the molecular mechanisms underlying this process. Liverwort (Marchantia polymorpha), a basal land plant, propagates asexually via gemmae, which are clonal plantlets formed in gemma cups on the dorsal side of the vegetative thallus [1]. The initial stage of gemma development involves elongation and asymmetric divisions of a specific type of epidermal cell, called a gemma initial, which forms on the floor of the gemma cup [2, 3]. To investigate the regulatory mechanism underlying gemma development, we focused on two allelic mutants in which no gemma initial formed; these mutants were named karappo, meaning "empty." We used whole-genome sequencing of both mutants and molecular genetic analysis to identify the causal gene, KARAPPO (KAR), which encodes a ROP guanine nucleotide exchange factor (RopGEF) carrying a plant-specific ROP nucleotide exchanger (PRONE) catalytic domain. In vitro GEF assays showed that the full-length KAR protein and the PRONE domain have significant GEF activity toward MpROP, the only ROP GTPase in M. polymorpha. Moreover, genetic complementation experiments showed a significant role for the N- and C-terminal variable regions in gemma development. Our investigation demonstrates an essential role for KAR/RopGEF in the initiation of plantlet development from a differentiated cell, which may involve cell-polarity formation and subsequent asymmetric cell division via activation of ROP signaling, implying a similar developmental mechanism in vegetative reproduction of various land plants.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Marchantia/fisiología , Proteínas de Plantas/genética , Reproducción Asexuada , Factores de Intercambio de Guanina Nucleótido/metabolismo , Marchantia/genética , Proteínas de Plantas/metabolismo
8.
Plant J ; 100(3): 610-626, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31350858

RESUMEN

The elucidation of lipid metabolism in microalgae has attracted broad interest, as their storage lipid, triacylglycerol (TAG), can be readily converted into biofuel via transesterification. TAG accumulates in the form of oil droplets, especially when cells undergo nutrient deprivation, such as for nitrogen (N), phosphorus (P), or sulfur (S). TAG biosynthesis under N-deprivation has been comprehensively studied in the model microalga Chlamydomonas reinhardtii, during which TAG accumulates dramatically. However, the resulting rapid breakdown of chlorophyll restricts overall oil yield productivity and causes cessation of cell growth. In contrast, P-deprivation results in oil accumulation without disrupting chloroplast integrity. We used a reverse genetics approach based on co-expression analysis to identify a transcription factor (TF) that is upregulated under P-depleted conditions. Transcriptomic analysis revealed that the mutants showed repression of genes typically associated with lipid remodeling under P-depleted conditions, such as sulfoquinovosyl diacylglycerol 2 (SQD2), diacylglycerol acyltransferase (DGTT1), and major lipid droplet protein (MLDP). As accumulation of sulfoquinovosyl diacylglycerol and TAG were suppressed in P-depleted mutants, we designated the protein as lipid remodeling regulator 1 (LRL1). LRL1 mutants showed slower growth under P-depletion. Moreover, cell size in the mutant was significantly reduced, and TAG and starch accumulation per cell were decreased. Transcriptomic analysis also suggested the repression of several genes typically upregulated in adaptation to P-depletion that are associated with the cell cycle and P and lipid metabolism. Thus, our analysis of LRL1 provides insights into P-allocation and lipid remodeling under P-depleted conditions in C. reinhardtii. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The sequencing data were made publicly available under the BioProject Accession number PRJDB6733 and an accession number LC488724 at the DNA Data Bank of Japan (DDBJ). The data is available at https://trace.ddbj.nig.ac.jp/BPSearch/bioproject?acc=PRJDB6733; http://getentry.ddbj.nig.ac.jp/getentry/na/LC488724. The metabolome data were made publicly available and can be accessed at http://metabolonote.kazusa.or.jp/SE195:/; http://webs2.kazusa.or.jp/data/nur/.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Metabolismo de los Lípidos/genética , Metaboloma , Fósforo/deficiencia , Proteínas de Plantas/metabolismo , Triglicéridos/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas de Unión al ADN/genética , Diacilglicerol O-Acetiltransferasa/genética , Perfilación de la Expresión Génica , Genes Reporteros , Microalgas , Modelos Biológicos , Mutación , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Almidón/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Cell ; 31(5): 1127-1140, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30894460

RESUMEN

Endoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Here, we identified proteins and lipids that function downstream of the ER stress sensor INOSITOL-REQUIRING ENZYME1 (CrIRE1) that contributes to ER stress tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Treatment with the ER stress inducer tunicamycin resulted in the splicing of a 32-nucleotide fragment of a basic leucine zipper 1 (bZIP1) transcription factor (CrbZIP1) mRNA by CrIRE1 that, in turn, resulted in the loss of the transmembrane domain in CrbZIP1, and the translocation of CrbZIP1 from the ER to the nucleus. Mutants deficient in CrbZIP1 failed to induce the expression of the unfolded protein response genes and grew poorly under ER stress. Levels of diacylglyceryltrimethylhomoserine (DGTS) and pinolenic acid (18:3Δ5,9,12) increased in the parental strains but decreased in the crbzip1 mutants under ER stress. A yeast one-hybrid assay revealed that CrbZIP1 activated the expression of enzymes catalyzing the biosynthesis of DGTS and pinolenic acid. Moreover, two lines harboring independent mutant alleles of Chlamydomonas desaturase (CrDES) failed to synthesize pinolenic acid and were more sensitive to ER stress than were their parental lines. Together, these results indicate that CrbZIP1 is a critical component of the ER stress response mediated by CrIRE1 in Chlamydomonas that acts via lipid remodeling.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Chlamydomonas reinhardtii/genética , Estrés del Retículo Endoplásmico , Metabolismo de los Lípidos , Alelos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/fisiología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Linolénicos/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Triglicéridos/metabolismo , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Plant Cell Physiol ; 60(4): 916-930, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668822

RESUMEN

Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Chlamydomonas/metabolismo , Triglicéridos/metabolismo , Carbono/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Peróxido de Hidrógeno/metabolismo , Nitrógeno/metabolismo , Proteínas Quinasas/metabolismo
11.
Plant Cell Physiol ; 60(1): 126-138, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295899

RESUMEN

Autophagy is a recycling system for amino acids and carbon- and nitrogen (N)-containing compounds. To date, the functional importance of autophagy in microalgae in nutrient-deficient conditions has not been evaluated by using autophagy-defective mutants. Here, we provide evidence which supports the following notions by characterizing an insertional mutant of the autophagy-related gene ATG8, encoding a ubiquitin-like protein necessary for the formation of the autophagosome in the green alga, Chlamydomonas reinhardtii. First, ATG8 is required for maintenance of cell survival and Chl content in N-, sulfur- and phosphate-deficient conditions. Secondly, ATG8 supports the degradation of triacylglycerol and lipid droplets after the resupply of N to cells cultured in N-limiting conditions. Thirdly, ATG8 is also necessary for accumulation of starch in phosphate-deficient conditions. Additionally, autophagy is not essential for maternal inheritance of the organelle genomes in gametogenesis.


Asunto(s)
Autofagia , Chlamydomonas/genética , Mutación/genética , Nitrógeno/deficiencia , Fosfatos/deficiencia , Azufre/deficiencia , Proteínas Relacionadas con la Autofagia/metabolismo , Carbono/metabolismo , Supervivencia Celular , Chlamydomonas/metabolismo , Clorofila/metabolismo , Lípidos/química , Fenotipo , Ubiquitina/metabolismo
12.
Plant J ; 96(5): 997-1006, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30194869

RESUMEN

Essential metal absorption for plant growth is mediated predominantly by metal-specific transporters, with expression that responds to the environmental or cellular conditions of specific metals. Differing from metal-specific regulation, we describe a constitutively expressed transcription factor that regulates the transport of several metals in rice. We characterized the rice mutant LOW CADMIUM 5 (LC5), which exhibited reduced growth and accumulation of essential metals (e.g., copper [Cu], zinc [Zn] and manganese [Mn]) in shoots. LC5 was dwarf and developed less tillers than the wild type, but the structure of vasculature was apparently normal. Molecular genetic analysis revealed that the causal gene of LC5 is an ortholog of the transcriptional regulator Arabidopsis thaliana TITANIA (TTA), known as a transcriptional regulator. Expression analyses demonstrated that the OsTTA gene encodes a nucleus-localized protein containing a plant homeodomain-finger (PHD-finger) domain and is expressed ubiquitously in rice plants. RNA sequencing and quantitative PCR analyses revealed that the mRNA accumulation of transporter genes for essential metals, including iron (Fe), Zn, or Mn, were substantially lower in LC5 roots than in the wild type. Unlike known transcription factors of metal transport regulation, OsTTA transcript accumulation was not affected by metal availability. In addition, the growth defect of LC5 was partially rescued by Fe, Zn, or Mn supplementation, respectively. Taken together, OsTTA is a constitutively expressed regulator of multiple metal transporter genes responsible for essential metals delivery to shoots for their normal growth.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Oryza/metabolismo , Dedos de Zinc PHD/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Cadmio/metabolismo , Cobre/metabolismo , Genes de Plantas/genética , Hierro/metabolismo , Manganeso/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutación , Oryza/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Zinc/metabolismo
13.
Plant Physiol ; 174(2): 999-1011, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28584068

RESUMEN

In tobacco (Nicotiana tabacum), nicotine is the predominant alkaloid. It is produced in the roots and accumulated mainly in the leaves. Jasmonates play a central signaling role in damage-induced nicotine formation. The genome sequence of tobacco provides us an almost complete inventory of structural and regulatory genes involved in nicotine pathway. Phylogenetic and expression analyses revealed a series of structural genes of the nicotine pathway, forming a regulon, under the control of jasmonate-responsive ETHYLENE RESPONSE FACTOR (ERF) transcription factors. The duplication of NAD and polyamine metabolic pathways and the subsequent recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon were suggested to be the drivers for pyridine and pyrrolidine ring formation steps early in the pathway. Transcriptional regulation by ERF and cooperatively acting MYC2 transcription factors are corroborated by the frequent occurrence of cognate cis-regulatory elements of the factors in the promoter regions of the downstream structural genes. The allotetraploid tobacco has homologous clusters of ERF genes on different chromosomes, which are possibly derived from two ancestral diploids and include either nicotine-controlling ERF189 or ERF199 A large chromosomal deletion was found within one allele of the nicotine-controlling NICOTINE2 locus, which is part of one of the ERF gene clusters, and which has been used to breed tobacco cultivars with a low-nicotine content.


Asunto(s)
Vías Biosintéticas/genética , Evolución Molecular , Genoma de Planta , Nicotiana/genética , Nicotina/biosíntesis , Secuencia de Bases , Vías Biosintéticas/efectos de los fármacos , Cromosomas de las Plantas/genética , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Sitios Genéticos , Glucuronidasa/metabolismo , Familia de Multigenes , Mutación/genética , NAD/metabolismo , Oxilipinas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Regiones Promotoras Genéticas , Eliminación de Secuencia/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/efectos de los fármacos
14.
Plant Signal Behav ; 12(6): e1338225, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28613112

RESUMEN

In tobacco, the defense alkaloid nicotine is produced in roots and accumulates mainly in leaves. Signaling mediated by jasmonates (JAs) induces the formation of nicotine via a series of structural genes that constitute a regulon and are coordinated by JA-responsive transcription factors of the ethylene response factor (ERF) family. Early steps in the pyrrolidine and pyridine biosynthesis pathways likely arose through duplication of the polyamine and nicotinamide adenine dinucleotide (NAD) biosynthetic pathways, respectively, followed by recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon. Transcriptional regulation of nicotine biosynthesis by ERF and cooperatively-acting MYC2 transcription factors is implied by the frequency of cognate cis-regulatory elements for these factors in the promoter regions of the downstream structural genes. Indeed, a mutant tobacco with low nicotine content was found to have a large chromosomal deletion in a cluster of closely related ERF genes at the nicotine-controlling NICOTINE2 (NIC2) locus.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Nicotiana/genética , Nicotina/biosíntesis , Regulón/genética , Vías Biosintéticas/genética , Duplicación de Gen , Genes de Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Sci Rep ; 6: 36809, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830762

RESUMEN

Ricinoleic acid (RA), a hydroxyl fatty acid, is suitable for medical and industrial uses and is produced in high-oil-accumulating organisms such as castor bean and the ergot fungus Claviceps. We report here the efficient production of RA in a transgenic diatom Chaetoceros gracilis expressing the fatty acid hydroxylase gene (CpFAH) from Claviceps purpurea. In transgenic C. gracilis, RA content increased at low temperatures, reaching 2.2 pg/cell when cultured for 7 d at 15 °C, without affecting cell growth, and was enhanced (3.3 pg/cell) by the co-expression of a palmitic acid-specific elongase gene. Most of the accumulated RA was linked with monoestolide triacylglycerol (ME TAG), in which one RA molecule was esterified to the α position of the glycerol backbone and was further esterified at its hydroxy group with a fatty acid or second RA moiety, or 1-OH TAG, in which RA was esterified to the glycerol backbone. Overall, 80% of RA was accumulated as ME TAGs. Furthermore, exogenous RA-methyl ester suppressed the growth of wild-type diatoms in a dose-dependent manner and was rapidly converted to ME TAG. These results suggest that C. gracilis masks the hydroxyl group and accumulates RA as the less-toxic ME TAG.


Asunto(s)
Diatomeas/metabolismo , Ácidos Ricinoleicos/metabolismo , Triglicéridos/biosíntesis , Reactores Biológicos , Clonación Molecular , Diatomeas/genética , Metabolismo de los Lípidos , Ingeniería Metabólica , Oxigenasas de Función Mixta/genética
16.
Biosci Biotechnol Biochem ; 80(10): 1907-16, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27310473

RESUMEN

Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.


Asunto(s)
Citrullus/enzimología , Citrullus/fisiología , Sequías , Raíces de Plantas/crecimiento & desarrollo , Proteína de Unión al GTP ran/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Citrullus/genética , Citrullus/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Agua/metabolismo , Proteína de Unión al GTP ran/química , Proteína de Unión al GTP ran/genética
17.
Plant Physiol ; 168(2): 752-64, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25922058

RESUMEN

Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Nitrógeno/deficiencia , Proteínas de Plantas/metabolismo , Azufre/deficiencia , Triglicéridos/metabolismo , Tirosina/metabolismo , Chlamydomonas reinhardtii/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Nitrógeno/farmacología , Fenotipo , Fosforilación/efectos de los fármacos , Filogenia , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Almidón/metabolismo , Azufre/farmacología
18.
PLoS One ; 10(3): e0120446, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25764133

RESUMEN

Several microalgae accumulate high levels of squalene, and as such provide a potentially valuable source of this useful compound. However, the molecular mechanism of squalene biosynthesis in microalgae is still largely unknown. We obtained the sequences of two enzymes involved in squalene synthesis and metabolism, squalene synthase (CrSQS) and squalene epoxidase (CrSQE), from the model green alga Chlamydomonas reinhardtii. CrSQS was functionally characterized by expression in Escherichia coli and CrSQE by complementation of a budding yeast erg1 mutant. Transient expression of CrSQS and CrSQE fused with fluorescent proteins in onion epidermal tissue suggested that both proteins were co-localized in the endoplasmic reticulum. CrSQS-overexpression increased the rate of conversion of 14C-labeled farnesylpyrophosphate into squalene but did not lead to over-accumulation of squalene. Addition of terbinafine caused the accumulation of squalene and suppression of cell survival. On the other hand, in CrSQE-knockdown lines, the expression level of CrSQE was reduced by 59-76% of that in wild-type cells, and significant levels of squalene (0.9-1.1 µg mg-1 cell dry weight) accumulated without any growth inhibition. In co-transformation lines with CrSQS-overexpression and CrSQE-knockdown, the level of squalene was not increased significantly compared with that in solitary CrSQE-knockdown lines. These results indicated that partial knockdown of CrSQE is an effective strategy to increase squalene production in C. reinhardtii cells.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Escualeno-Monooxigenasa/genética , Escualeno/metabolismo , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Farnesil Difosfato Farnesil Transferasa/metabolismo , Técnicas de Silenciamiento del Gen , Mutación , Naftalenos/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escualeno-Monooxigenasa/metabolismo , Esteroles/biosíntesis , Terbinafina , Levaduras/genética
19.
Phytochemistry ; 107: 42-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25174554

RESUMEN

Eight-carbon (C8) volatiles, such as 1-octen-3-ol, octan-3-one, and octan-3-ol, are ubiquitously found among fungi and bryophytes. In this study, it was found that the thalli of the common liverwort Marchantia polymorpha, a model plant species, emitted high amounts of C8 volatiles mainly consisting of (R)-1-octen-3-ol and octan-3-one upon mechanical wounding. The induction of emission took place within 40min. In intact thalli, 1-octen-3-yl acetate was the predominant C8 volatile while tissue disruption resulted in conversion of the acetate to 1-octen-3-ol. This conversion was carried out by an esterase showing stereospecificity to (R)-1-octen-3-yl acetate. From the transgenic line of M. polymorpha (des6(KO)) lacking arachidonic acid and eicosapentaenoic acid, formation of C8 volatiles was only minimally observed, which indicated that arachidonic and/or eicosapentaenoic acids were essential to form C8 volatiles in M. polymorpha. When des6(KO) thalli were exposed to the vapor of 1-octen-3-ol, they absorbed the alcohol and converted it into 1-octen-3-yl acetate and octan-3-one. Therefore, this implied that 1-octen-3-ol was the primary C8 product formed from arachidonic acid, and further metabolism involving acetylation and oxidoreduction occurred to diversify the C8 products. Octan-3-one was only minimally formed from completely disrupted thalli, while it was formed as the most abundant product in partially disrupted thalli. Therefore, it is assumed that the remaining intact tissues were involved in the conversion of 1-octen-3-ol to octan-3-one in the partially disrupted thalli. The conversion was partly promoted by addition of NAD(P)H into the completely disrupted tissues, suggesting an NAD(P)H-dependent oxidoreductase was involved in the conversion.


Asunto(s)
Ácido Araquidónico/metabolismo , Marchantia/química , NADP/metabolismo , Heridas y Lesiones/metabolismo , Carbono/metabolismo , Ácido Eicosapentaenoico/metabolismo , Hidrólisis , Marchantia/enzimología , Estructura Molecular , Octanoles/metabolismo , Oxidación-Reducción , Factores de Tiempo
20.
Photosynth Res ; 121(2-3): 175-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24549931

RESUMEN

Aquatic microalgae induce a carbon-concentrating mechanism (CCM) to maintain photosynthetic activity in low-CO2 (LC) conditions. Although the molecular mechanism of the CCM has been investigated using the single-cell green alga Chlamydomonas reinhardtii, and several CCM-related genes have been identified by analyzing high-CO2 (HC)-requiring mutants, many aspects of the CO2-signal transduction pathways remain to be elucidated. In this study, we report the isolation of novel HC-requiring mutants defective in the induction of CCM by DNA tagging. Growth rates of 20,000 transformants grown under HC and LC conditions were compared, and three HC-requiring mutants (H24, H82, and P103) were isolated. The photosynthetic CO2-exchange activities of these mutants were significantly decreased compared with that of wild-type cells, and accumulation of HLA3 and both LCIA and HLA3 were absent in mutants H24 and H82, respectively. Although the insertion of the marker gene and the HC-requiring phenotype were linked in the tetrad progeny of H82, and a calcium-sensing receptor CAS was disrupted by the insertion, exogenous expression of CAS alone could not complement the HC-requiring phenotype.


Asunto(s)
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Fotosíntesis/genética , Fotosíntesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...