Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 36(46): 6480-6489, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-28759045

RESUMEN

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is frequently activated in cancers and can be counteracted with the clinical mTORC1 inhibitors everolimus and temsirolimus. Although mTORC1 and dual mTORC1/2 inhibitors are currently under development to treat various malignancies, the emergence of drug resistance has proven to be a major complication. Using the cis-Apc/Smad4 mouse model of locally invasive intestinal adenocarcinoma, we show that administration of everolimus or the dual mTORC1/2 inhibitor AZD8055 significantly reduces the growth of intestinal tumors. In contrast, although everolimus treatment at earlier phase of tumor progression delayed invasion of the tumors, both inhibitors exhibited little effect on blocking invasion of the tumors when administered later in their progression. Biochemical and immunohistochemical analyses revealed that treatment of cis-Apc/Smad4 mice with everolimus or AZD8055 induced marked increases in epidermal growth factor receptor (EGFR) and MEK/ERK signaling in tumor epithelial and stromal cells, respectively. Notably, co-administration of AZD8055 and the EGFR inhibitor erlotinib or the MEK inhibitor trametinib was sufficient to suppress tumor invasion in cis-Apc/Smad4 mice. These data indicate that mTOR inhibitor resistance in invasive intestinal tumors involves feedback signaling from both cancer epithelial and stromal cells, highlighting the role of tumor microenvironment in drug resistance, and support that simultaneous inhibition of mTOR and EGFR or MEK may be more effective in treating colon cancer.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Neoplasias Intestinales/tratamiento farmacológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Everolimus/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Morfolinas/farmacología , Invasividad Neoplásica , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
2.
Cell Death Dis ; 7: e2196, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27077812

RESUMEN

Paneth cells reside at the base of crypts of the small intestine and secrete antimicrobial factors to control gut microbiota. Paneth cell loss is observed in the chronically inflamed intestine, which is often associated with increased reactive oxygen species (ROS). However, the relationship between Paneth cell loss and ROS is not yet clear. Intestinal epithelial-specific deletion of a protein kinase Tak1 depletes Paneth cells and highly upregulates ROS in the mouse model. We found that depletion of gut bacteria or myeloid differentiation factor 88 (Myd88), a mediator of bacteria-derived cell signaling, reduced ROS but did not block Paneth cell loss, suggesting that gut bacteria are the cause of ROS accumulation but bacteria-induced ROS are not the cause of Paneth cell loss. In contrast, deletion of the necroptotic cell death signaling intermediate, receptor-interacting protein kinase 3 (Ripk3), partially blocked Paneth cell loss. Thus, Tak1 deletion causes Paneth cell loss in part through necroptotic cell death. These results suggest that TAK1 participates in intestinal integrity through separately modulating bacteria-derived ROS and RIPK3-dependent Paneth cell loss.


Asunto(s)
Apoptosis , Quinasas Quinasa Quinasa PAM/metabolismo , Células de Paneth/metabolismo , Animales , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Intestinos/patología , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Necrosis , Células de Paneth/efectos de los fármacos , Células de Paneth/patología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Regulación hacia Arriba
3.
Oncogene ; 28(23): 2257-65, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19421137

RESUMEN

TNF-related apoptosis-inducing ligand (TRAIL) is a potent inducer of cell death in several cancer cells, but many cells are resistant to TRAIL. The mechanism that determines sensitivity to TRAIL-killing is still elusive. Here we report that deletion of TAK1 kinase greatly increased activation of caspase-3 and cell death after TRAIL stimulation in keratinocytes, fibroblasts and cancer cells. Although TAK1 kinase is involved in NF-kappaB pathway, ablation of NF-kappaB did not alter sensitivity to TRAIL. We found that TRAIL could induce accumulation of reactive oxygen species (ROS) when TAK1 was deleted. Furthermore, we found that TAK1 deletion induced TRAIL-dependent downregulation of cIAP, which enhanced activation of caspase-3. These results show that TAK1 deletion facilitates TRAIL-induced cell death by activating caspase through ROS and downregulation of cIAP. Thus, inhibition of TAK1 can be an effective approach to increase TRAIL sensitivity.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Células HeLa , Humanos , Immunoblotting , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Microscopía Fluorescente , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , Proteínas Recombinantes/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...