Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 15730, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356122

RESUMEN

Magnetic shape memory alloys are under intensive investigation due to their unusual physical properties, such as magnetic shape memory effect, magnetic field induced superelasticity, direct and inverse magnetocaloric effect etc., promising for novel applications. One of the intriguing properties of these materials in a single phase state is a giant magnetoresistance. Here we report the remarkable results about the magnetoresistive properties of epitaxial films of Ni52.3Mn26.8Ga20.9 magnetic shape memory alloy in the temperature range of 100-370 K, well below the martensitic transformation temperature. It was found that the formation of non-collinear magnetic structure due to a nanotwinning of the film results in electron scattering on such a structure and noticeable negative magnetoresistance in the entire investigated temperature range.

2.
Sci Rep ; 5: 18480, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26690826

RESUMEN

The spin wave dynamics in patterned magnetic nanostructures is under intensive study during the last two decades. On the one hand, this interest is generated by new physics that can be explored in such structures. On the other hand, with the development of nanolithography, patterned nanoelements and their arrays can be used in many practical applications (magnetic recording systems both as media and read-write heads, magnetic random access memory, and spin-torque oscillators just to name a few). In the present work the evolution of spin wave spectra of an array of non-interacting Permalloy submicron circular dots for the case of magnetic field deviation from the normal to the array plane have been studied by ferromagnetic resonance technique. It is shown that such symmetry violation leads to a splitting of spin-wave modes, and that the number of the split peaks depends on the mode number. A quantitative description of the observed spectra is given using a perturbation theory for small angles of field inclination from the symmetry direction. The obtained results give possibility to predict transformation of spin wave spectra depending on direction of the external magnetic field that can be important for spintronic and nanomagnetic applications.

3.
Sci Rep ; 5: 13881, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26355430

RESUMEN

Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

4.
Phys Rev Lett ; 115(5): 056601, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26274431

RESUMEN

Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface.

5.
J Nanosci Nanotechnol ; 12(9): 7486-90, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035501

RESUMEN

Pulsed electrodeposition prepared porous alumina templates with Ni nanowires pore filling ranged from 1 to 100%, depending on the alumina barrier-layer thickness, were probed by continuous wave ferromagnetic resonance at room temperature. For completely filled samples, a single resonance peak was observed in the whole range of angles between the applied magnetic field and normal to the sample plane. Its position was described by Kittel formula that takes into account shape anisotropy of individual Ni wires and dipolar interactions between them. For the samples with lower pore filling the effective anisotropy field decreased and the resonance linewidth in the perpendicular configuration increased. Also a quite intense second peak was observed at lower fields for these samples. These changes are associated with reduction of pore filling percentage that can lead to decrease of dipolar interactions between nanowires and to appearance of magnetic inhomogeneities inside wires.

6.
J Nanosci Nanotechnol ; 12(9): 7505-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035505

RESUMEN

We report magnetic, dynamic and transport properties of discontinuous metal-insulator multilayers Fe/MgO grown on amorphous Corning glass and single-crystalline MgO (001) substrates. The films of structure Substrate/MgO (3 nm)/[Fe (0.6 nm)/MgO (3.0 nm)] x 10 were prepared in ultra-high vacuum conditions using Pulsed Laser Deposition. It was shown that conditions of epitaxial growth are favorable for MgO substrates. As a result a substantial increase of tunneling magnetoresistance caused by spin-filtering effect was observed and reasonably theoretically explained. The value of TMR - 9.2% at room temperature in 18 kOe magnetic field is three times higher comparing to that for the samples grown on Corning glass substrates.

7.
J Nanosci Nanotechnol ; 12(9): 7510-5, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035506

RESUMEN

Magnetization reversal processes have been analyzed by Magnetic Force Microscopy in dense arrays of Co bars with well defined shape anisotropy and strong magnetostatic interactions. Two different geometries have been used: rectangular and rhombic so that the sign of dipolar interactions between adjacent chains of bars is changed from antiferromagnetic (rectangular array) to ferromagnetic (rhombic array), having a profound influence on the shape of a nucleus of inversion at the magnetization reversal.

8.
J Nanosci Nanotechnol ; 12(9): 7529-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035510

RESUMEN

Nanoparticles of Co10Cu90 alloy have been prepared by sonochemical wet method. According to transmission electron microscopy, bimetallic particles with typical diameter of 50-100 nm consisting of nanocrystallites with average diameter of 15-20 nm were obtained. The samples were annealed at 300 degrees C and 450 degrees C. Zero field cooled and field cooled temperature dependences of magnetization in the temperature range of 5-400 K at 50 Oe, as well as magnetization hysteresis loops at 15, 100 and 305 K were measured by vibrating sample magnetometry. Presence of antiferromagnetic phase, most probably of the oxide Co3O4, was observed in as-prepared sample. The lowest coercivity was found for the CoCu sample annealed at-300 degrees C, whereas for as prepared sample and the one annealed at 450 degrees C it was significantly higher. The samples were additionally probed by continuous wave ferromagnetic resonance at room, temperature using a standard X-band electron spin resonance spectrometer. A good correspondence between evolution of the coercivity and the microwave resonance fields with annealing temperature was observed.

9.
J Nanosci Nanotechnol ; 8(6): 2811-26, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18681017

RESUMEN

X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA