Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Des Monomers Polym ; 26(1): 182-189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426067

RESUMEN

Various transition metal catalysts have been utilized for ethylene polymerization. Silver catalysts have attracted less attention as the catalysts, but are potential for production of high molecular weight polyethylene. Herein, we report that silver complexes with various N-heterocyclic carbene (NHC) ligands in combination with modified methylaluminoxane (MMAO) afford polyethylene with high molecular weight (melting point over 140°C). SEM observation showed that the produced polyethylene has ultra-high molecular weight. NMR investigation of the reaction between the silver complexes with organoaluminums indicate that the NHC ligands transfer from the silver complex to aluminum to produce NHC aluminum complexes. Ph3C[B(C6F5)4] abstract methyl group from the NHC aluminum complex to afford cationic aluminum complex. The NHC aluminum complex promoted ethylene polymerization in the presence of Ph3C[B(C6F5)4] and organoaluminums. NHC ligand also promoted ethylene polymerization in combination with MMAO to produce polyethylene with high melting point (140.7°C). Thus, the aluminum complexes are considered to be the actual active species in silver-catalyzed ethylene polymerization.

2.
J Phys Chem B ; 119(11): 4284-93, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25697812

RESUMEN

The property development of the ethylene-tetrafluoroethylene copolymer (ETFE) membrane induced by simultaneous biaxial drawing was investigated. Commonly, tensile strength can be increased by drawing; conversely, tear resistance decreases. In this study, the balance between tensile strength and tear resistance for the resultant ETFE membrane was optimized achieved by a combination of lamination of low molecular weight (LMW) and high molecular weight (HMW) layers and subsequent biaxial drawing. The structural factor determining tear resistance of these biaxially drawn membranes was determined based on in situ small-angle X-ray scattering (SAXS) measurement during tensile deformation simulating tearing tests. Lozenge shaped scattering, which indicated inclined lamellae, was observed during such tensile deformation of the resultant membranes. Remarkably, this inclined lamellar structure was observed for the pure LMW membrane; however, it also appeared at the interface between LMW and HMW layers within biaxially drawn membranes. For the membrane exhibiting the highest tearing strength, the fraction of such inclined lamella increased up to the critical strain corresponding to the actual sample breaking. These results confirm that the inclined lamellar structure absorbed strain during membrane tearing.

4.
ACS Nano ; 3(4): 924-32, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19323485

RESUMEN

A series of nanoporous membranes prepared from polyethylene-block-polystyrene were applied for size-selective diffusion of glucose and albumin molecules. Millimeter-sized test cells for characterization of such molecular diffusions were designed assuming an implantable glucose sensor. The prepared nanoporous membrane exhibits excellent flexibility and toughness compared to conventional nanoporous membranes of brittle alumina. Pore size of the membranes could be controlled from 5 to 30 nm by varying preparation conditions. All of these nanoporous membranes prepared in this study let glucose pass through, indicating a continuous pore connection through the entire thickness of the membrane in a few tens of micrometers. In contrast, membranes prepared under optimum conditions could perfectly block albumin permeation. This means that these vital molecules having different sizes can be selectively diffused through the nanoporous membranes. Such a successful combination of size selectivity of molecular diffusion in nanoscale and superior mechanical properties in macroscale is also beneficial for other devices requesting down-sized manufacture.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/análisis , Nanoestructuras , Animales , Glucemia/análisis , Bovinos , Cristalización , Difusión , Humanos , Técnicas In Vitro , Membranas Artificiales , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología , Polietileno/química , Poliestirenos/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/aislamiento & purificación
5.
J Phys Chem B ; 112(17): 5311-6, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18393544

RESUMEN

Changes in the crystalline structure during heating of melt-drawn ultrahigh molecular weight polyethylenes (UHMW-PEs) having different molecular characteristics were analyzed by in situ wide-angle X-ray diffraction measurements. A phase transition from the orthorhombic into the hexagonal phase was observed for all samples, but the perfection was enhanced and the possible temperature window for the hexagonal phase was greater for the sample containing only a higher molecular weight component. In contrast, an increase in retractive stress during heating was confirmed for the sample containing a lower molecular weight component, reflecting melting of the folded-chain crystal (FCC). Differential scanning calorimetry and transmission electron microscopy revealed the dependency of the molecular characteristics of the sample on the resultant morphologies. These results demonstrate that the existence of FCC determines both the quality and the width of the temperature window for the hexagonal phase during heating of melt-drawn UHMW-PEs.

6.
Langmuir ; 23(11): 5882-5, 2007 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-17458984

RESUMEN

Nanoscratch tests using scanning probe microscopy (SPM) were performed on films prepared from two polyethylene (PE) materials polymerized by using a metallocene catalyst system with different molecular weights (MWs). Blended samples were prepared by dissolving both PE materials at various ratios in hot p-xylene. The pure and blended samples were compression molded into films at 180 degrees C for different holding times in the molten state. The results of SPM nanoscratch tests with an applied load of 30 nN indicated that the lower-MW surface could be easily plowed with wear debris but the higher-MW surface was less deformed. However, the deformation pattern of the blended film surface was similar to that of the lower-MW surface. These results suggest that MW segregation occurs during holding in the molten state as lower-MW components rise to the film surface.

7.
Langmuir ; 22(11): 4985-91, 2006 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-16700584

RESUMEN

The surface-deformation characteristics of uniaxially drawn poly(ethylene terephthalate) (PET) film were successfully evaluated with multiline scratch tests using scanning probe microscopy (SPM) on a nanometer scale. The PET film was prepared by compression molding from the melt, followed by quenching in ice water. The obtained amorphous film was drawn uniaxially below its glass-transition temperature, and the resultant surface roughness could be reduced to within 5 nm. A multiline scratch with the Si(3)N(4) tip of an SPM on the oriented PET surface was made parallel and perpendicular to the drawing axis under applied loads of 5-30 nN. The perpendicular scratching generated a characteristic periodic pattern on the film surface, but the parallel scratching induced a tearing of the surface. These results suggest that surface-deformation mechanisms were dominated by molecular anisotropy. The surface-deformation properties, as evaluated from scratch-angle dependences on morphological changes on a nanometer scale, were similar to the mechanical properties of the bulk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...