Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 294(44): 16034-16048, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31506300

RESUMEN

Sonic hedgehog (SHH) is important for organogenesis during development. Recent studies have indicated that SHH is also involved in the proliferation and transformation of astrocytes to the reactive phenotype. However, the mechanisms underlying these are unknown. Involvement of SHH signaling in calcium (Ca) signaling has not been extensively studied. Here, we report that SHH and Smoothened agonist (SAG), an activator of the signaling receptor Smoothened (SMO) in the SHH pathway, activate Ca oscillations in cultured murine hippocampal astrocytes. The response was rapid, on a minute time scale, indicating a noncanonical pathway activity. Pertussis toxin blocked the SAG effect, indicating an involvement of a Gi coupled to SMO. Depletion of extracellular ATP by apyrase, an ATP-degrading enzyme, inhibited the SAG-mediated activation of Ca oscillations. These results indicate that SAG increases extracellular ATP levels by activating ATP release from astrocytes, resulting in Ca oscillation activation. We hypothesize that SHH activates SMO-coupled Gi in astrocytes, causing ATP release and activation of Gq/11-coupled P2 receptors on the same cell or surrounding astrocytes. Transcription factor activities are often modulated by Ca patterns; therefore, SHH signaling may trigger changes in astrocytes by activating Ca oscillations. This enhancement of Ca oscillations by SHH signaling may occur in astrocytes in the brain in vivo because we also observed it in hippocampal brain slices. In summary, SHH and SAG enhance Ca oscillations in hippocampal astrocytes, Gi mediates SAG-induced Ca oscillations downstream of SMO, and ATP-permeable channels may promote the ATP release that activates Ca oscillations in astrocytes.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Proteínas Hedgehog/metabolismo , Hipocampo/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Hipocampo/citología , Ratones , Ratones Endogámicos ICR , Receptor Smoothened/metabolismo
2.
Exp Cell Res ; 353(2): 79-87, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28284839

RESUMEN

Chromosome instability, frequently found in cancer cells, is caused by a deficiency in cell division, including centrosomal amplification and cytokinesis failure, and can result in abnormal chromosome content or aneuploidy. The small GTPase pathways have been implicated as important processes in cell division. We found that knockdown of a tumor suppressor protein Kank1 increases the number of cells with a micronucleus or bi-/multi-nuclei, which was likely caused by centrosomal amplification. Kank1 interacts with Daam1, known to bind to and activate a small GTPase, RhoA, in actin assembly. Knockdown of Kank1 or overexpression of Daam1, respectively, hyperactivates RhoA, potentially leading to the modulation of the activity of Aurora-A, a key regulator of centrosomal functions, eventually resulting in centrosomal amplification. Kank1 is also associated with contractile ring formation in collaboration with RhoA, and its deficiency results in the interruption of normal daughter cell separation, generating multinucleate cells. Such abnormal segregation of chromosomes may cause further chromosomal instability and abnormal gene functions, leading to tumorigenesis. Thus, Kank1 plays a crucial role in regulating the activity of RhoA through retrieving excess Daam1 and balancing the activities of RhoA and its effectors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinogénesis/genética , Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Proteína de Unión al GTP rhoA/genética , Animales , Aurora Quinasa A/genética , División Celular/genética , Centrosoma/metabolismo , Inestabilidad Cromosómica/genética , Segregación Cromosómica/genética , Proteínas del Citoesqueleto , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Proteínas de Microfilamentos , Células 3T3 NIH , Neoplasias/patología , Proteínas de Unión al GTP rho
3.
Epilepsy Res ; 108(3): 420-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24480790

RESUMEN

Mutations in GABRG2, which encodes the γ2 subunit of GABAA receptors, can cause both genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Most GABRG2 truncating mutations associated with Dravet syndrome result in premature termination codons (PTCs) and are stably translated into mutant proteins with potential dominant-negative effects. This study involved search for mutations in candidate genes for Dravet syndrome, namely SCN1A, 2A, 1B, 2B, GABRA1, B2, and G2. A heterozygous nonsense mutation (c.118C>T, p.Q40X) in GABRG2 was identified in dizygotic twin girls with Dravet syndrome and their apparently healthy father. Electrophysiological studies with the reconstituted GABAA receptors in HEK cells showed reduced GABA-induced currents when mutated γ2 DNA was cotransfected with wild-type α1 and ß2 subunits. In this case, immunohistochemistry using antibodies to the α1 and γ2 subunits of GABAA receptor showed granular staining in the soma. In addition, microinjection of mutated γ2 subunit cDNA into HEK cells severely inhibited intracellular trafficking of GABAA receptor subunits α1 and ß2, and retention of these proteins in the endoplasmic reticulum. The mutated γ2 subunit-expressing neurons also showed impaired axonal transport of the α1 and ß2 subunits. Our findings suggested that different phenotypes of epilepsy, e.g., GEFS+ and Dravet syndrome (which share similar abnormalities in causative genes) are likely due to impaired axonal transport associated with the dominant-negative effects of GABRG2.


Asunto(s)
Codón sin Sentido/genética , Epilepsia/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Preescolar , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Femenino , Regulación de la Expresión Génica , Células HEK293 , Hipocampo/citología , Humanos , Lactante , Japón , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/fisiología , Subunidades de Proteína/genética , Transporte de Proteínas/genética , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , Gemelos Dicigóticos
4.
Traffic ; 11(2): 287-301, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19958467

RESUMEN

Functional defects in cilia are associated with various human diseases including congenital hydrocephalus. Previous studies suggested that defects in cilia not only disrupt the flow of cerebrospinal fluid (CSF) generated by motile cilia in ependyma lining the brain ventricles, but also cause increased CSF production at the choroid plexus. However, the molecular mechanisms of CSF overproduction by ciliary dysfunction remain elusive. To dissect the molecular mechanisms, choroid plexus epithelial cells (CPECs) were isolated from porcine brain. These cells expressed clusters of primary cilia on the apical surface. Deciliation of CPECs elevated the intracellular cyclic AMP (cAMP) levels and stimulated basolateral-to-apical fluid transcytosis, without detrimental effects on other morphological and physiological features. The primary cilia possessed neuropeptide FF (NPFF) receptor 2. In deciliated cells, the responsiveness to NPFF was reduced at nanomolar concentrations. Furthermore, CPECs expressed NPFF precursor along with NPFFR2. An NPFFR antagonist, BIBP3226, increased the fluid transcytosis, suggesting the presence of autocrine NPFF signaling in CPECs for a tonic inhibition of fluid transcytosis. These results suggest that the clusters of primary cilia in CPECs act as a sensitive chemosensor to regulate CSF production.


Asunto(s)
Cilios/metabolismo , Epitelio/metabolismo , Animales , Ansiolíticos/farmacología , Arginina/análogos & derivados , Arginina/farmacología , Comunicación Autocrina/efectos de los fármacos , Secuencia de Bases , Células CACO-2 , Bovinos , Línea Celular Tumoral , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/citología , Plexo Coroideo/metabolismo , Cilios/ultraestructura , AMP Cíclico/metabolismo , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Oligopéptidos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores de Neuropéptido/metabolismo , Porcinos
5.
Biochem Biophys Res Commun ; 386(4): 639-44, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19559006

RESUMEN

Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is associated with heterozygous mutations in the KIF21A gene, including a major (R954W) and a minor (M947T) mutation. Kank1, which regulates actin polymerization, cell migration and neurite outgrowth, interacted with the third and fourth coiled-coil domains of KIF21A protein at its ankyrin-repeat domain. While both KIF21A(R954W) and KIF21A(M947T) enhanced the formation of a heterodimer with the wild type, KIF21A(WT), these mutants also enhanced the interaction with Kank1. Knockdown of KIF21A resulted in Kank1 predominantly occurring in the cytosolic fraction, while KIF21A(WT) slightly enhanced the translocation of Kank1 to the membrane fraction. Moreover, KIF21A(R954W) significantly enhanced the translocation of Kank1 to the membrane fraction. These results suggest that KIF21A regulates the distribution of Kank1 and that KIF21A mutations associated with CFEOM1 enhanced the accumulation of Kank1 in the membrane fraction. This might cause an abrogation of neuronal development in cases of CFEOM1 through over-regulation of actin polymerization by Kank1.


Asunto(s)
Blefaroptosis/congénito , Cinesinas/genética , Músculos Oculomotores/patología , Oftalmoplejía/congénito , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Repetición de Anquirina/genética , Blefaroptosis/genética , Blefaroptosis/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , Fibrosis , Células HeLa , Humanos , Cinesinas/química , Cinesinas/metabolismo , Mutación , Oftalmoplejía/genética , Oftalmoplejía/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Proteínas Supresoras de Tumor/genética
6.
J Cell Biol ; 184(2): 253-67, 2009 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19171758

RESUMEN

In this study, insulin receptor substrate (IRS) p53 is identified as a binding partner for Kank, a kidney ankyrin repeat-containing protein that functions to suppress cell proliferation and regulate the actin cytoskeleton. Kank specifically inhibits the binding of IRSp53 with active Rac1 (Rac1(G12V)) but not Cdc42 (cdc42(G12V)) and thus inhibits the IRSp53-dependent development of lamellipodia without affecting the formation of filopodia. Knockdown (KD) of Kank by RNA interference results in increased lamellipodial development, whereas KD of both Kank and IRSp53 has little effect. Moreover, insulin-induced membrane ruffling is inhibited by overexpression of Kank. Kank also suppresses integrin-dependent cell spreading and IRSp53-induced neurite outgrowth. Our results demonstrate that Kank negatively regulates the formation of lamellipodia by inhibiting the interaction between Rac1 and IRSp53.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Células Cultivadas , Proteínas del Citoesqueleto , Células HeLa , Humanos , Ratones , Seudópodos/metabolismo , Interferencia de ARN
7.
J Cell Biol ; 181(3): 537-49, 2008 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-18458160

RESUMEN

Phosphoinositide-3 kinase (PI3K)/Akt signaling is activated by growth factors such as insulin and epidermal growth factor (EGF) and regulates several functions such as cell cycling, apoptosis, cell growth, and cell migration. Here, we find that Kank is an Akt substrate located downstream of PI3K and a 14-3-3-binding protein. The interaction between Kank and 14-3-3 is regulated by insulin and EGF and is mediated through phosphorylation of Kank by Akt. In NIH3T3 cells expressing Kank, the amount of actin stress fibers is reduced, and the coexpression of 14-3-3 disrupted this effect. Kank also inhibits insulin-induced cell migration via 14-3-3 binding. Furthermore, Kank inhibits insulin and active Akt-dependent activation of RhoA through binding to 14-3-3. Based on these findings, we hypothesize that Kank negatively regulates the formation of actin stress fibers and cell migration through the inhibition of RhoA activity, which is controlled by binding of Kank to 14-3-3 in PI3K-Akt signaling.


Asunto(s)
Proteínas 14-3-3/metabolismo , Movimiento Celular/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Fibras de Estrés/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteínas 14-3-3/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Repetición de Anquirina , Proteínas del Citoesqueleto , Activación Enzimática , Células HeLa , Humanos , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína de Unión al GTP rhoA/genética
8.
Biochim Biophys Acta ; 1780(2): 128-33, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17996375

RESUMEN

The human Kank gene was found as a candidate tumor suppressor for renal cell carcinoma, and encodes an ankyrin-repeat domain-containing protein, Kank. Here, we report a new family of proteins consisting of three Kank (Kank1)-associated members, Kank2, Kank3 and Kank4, which were found by domain and phylogenetic analyses. Besides the conserved ankyrin-repeat and coiled-coil domains, there was a conserved motif at the N-terminal (KN motif) containing potential motifs for nuclear localization and export signals. Gene expression of these genes was examined by RT-PCR at the mRNA level and by Western blotting and immunostaining at the protein level. Kank family genes showed variations in the expression level among tissues and kidney cell lines. Furthermore, the results of overexpression of these genes in NIH3T3 cells suggest that all of these family proteins have an identical role in the formation of actin stress fibers.


Asunto(s)
Repetición de Anquirina , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/clasificación , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Proteínas del Citoesqueleto , Expresión Génica , Genoma , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Filogenia , Ratas , Proteínas Supresoras de Tumor/genética
9.
J Cell Sci ; 119(Pt 19): 4002-10, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16968744

RESUMEN

The human Kank protein has a role in controlling the formation of the cytoskeleton by regulating actin polymerization. Besides the cytoplasmic localization as reported before, we observed the nuclear localization of Kank in OS-RC-2 cells. To uncover the mechanism behind this phenomenon, we focused on the nuclear localization signal (NLS) and the nuclear export signal (NES). We found one NLS (NLS1) and two NESs (NES1 and NES2) in the N-terminal region of Kank-L that were absent in Kank-S, and another NLS (NLS2) and NES (NES3) in the common region. These signals were active as mutations introduced into them abolished the nuclear import (for NLS1 and NLS2) or the nuclear export (for NES1 to NES3) of Kank. The localization of Kank in the cells before and after treatment with leptomycin B suggested that the transportation of Kank from the nucleus to the cytoplasm was mediated by a CRM1-dependent mechanism. TOPFLASH reporter assays revealed a positive relationship between the nuclear import of Kank and the activation of beta-catenin-dependent transcription. Kank can bind to beta-catenin and regulate the subcellular distribution of beta-catenin. Based on the findings shown here, we propose that Kank has multiple functions in the cells and plays different roles in the cytoplasm and the nucleus.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Transporte de Proteínas/fisiología , Proteínas Supresoras de Tumor/metabolismo , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Animales , Células Cultivadas , Proteínas del Citoesqueleto , Ácidos Grasos Insaturados/farmacología , Humanos , Ratones , Células 3T3 NIH , Señales de Localización Nuclear/química , Señales de Clasificación de Proteína , Distribución Tisular/efectos de los fármacos , Transcripción Genética , Proteínas Supresoras de Tumor/química
10.
Biochem Biophys Res Commun ; 330(4): 1247-53, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15823577

RESUMEN

The human Kank gene encodes an ankyrin repeat domain-containing protein which regulates actin polymerization. There are at least two types of Kank protein depending on cell type, likely due to differences in transcription. Here, to examine the transcriptional initiation and genomic organization of the human Kank gene, we performed 5'-RACE (rapid amplification of cDNA ends) using total RNA from normal kidney and a human kidney cancer cell line, VMRC-RCW cells. The results suggest that the human Kank gene has several alternative first exons. While mRNA from VMRC-RCW cells encoded Kank protein (referred to as Kank-S) as reported previously, mRNA from the normal kidney tissue encoded a novel type of Kank protein (referred to as Kank-L), which contained an additional N-terminal sequence 158 amino acids long. Promoter activity and the expression of the Kank variants in normal and cancer tissues were examined.


Asunto(s)
Empalme Alternativo , Proteínas Supresoras de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales , Línea Celular , Línea Celular Tumoral , Biología Computacional , Proteínas del Citoesqueleto , Exones , Genes Reporteros , Humanos , Riñón/metabolismo , Neoplasias Renales/metabolismo , Luciferasas/genética , Regiones Promotoras Genéticas , Proteínas Supresoras de Tumor/metabolismo
11.
Cancer Sci ; 96(3): 191-6, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15771623

RESUMEN

The improved IGCR (In-Gel Competitive Reassociation) method was applied to the analysis of human gastric cancer genomic DNA to identify its alterations, and it appeared that the IGCR library contained a fragment of 3'-untranslated region (3' UTR) of G-protein coupled receptor 30 (GPR30) mRNA. When we searched genomic DNA pairs of gastric cancer patients with this IGCR clone, we found the deletion polymorphism with or without 2 bp (Cytosine and Thymine; CT). We confirmed the existence of a novel mRNA in GPR30 3'UTR by northern blotting, cloned this novel mRNA and named it Leucine Rich Protein in GPR30 3'UTR (LERGU). The EST database search gave one alternative splicing form in this 3' UTR, which was named as LERGU-1. A novel alternative splicing form of this mRNA was also identified from the stomach total RNA, which was named LERGU-2. The LERGU mRNA was also detected in eight gastric cancer cell lines, but GPR30 mRNA scarcely existed. Furthermore, we detected the 2 bp-deletion form in genomic DNAs and mRNAs derived from gastric cancers, but not in other type cancers. Since the 2 bp-deletion position on LERGU corresponds to its alternative splicing site, this deletion may produce a frame-shifted protein. Overall, our findings suggest that a mutation or disappearance of the normal LERGU protein may have a function in the development of gastric cancer.


Asunto(s)
ADN de Neoplasias/genética , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Neoplasias Gástricas/genética , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN de Neoplasias/análisis , Mutación del Sistema de Lectura , Humanos , Leucina , Datos de Secuencia Molecular , ARN Mensajero/análisis , Receptores de Estrógenos , Neoplasias Gástricas/patología
12.
Cancer Lett ; 213(1): 111-6, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15312690

RESUMEN

Loss of heterozygosity (LOH) is an important event of tumorigenesis. In this paper, we report the comprehensive LOH analyses with microsatellite markers and their results at chromosome 8p11.1-q13.3 in gastric cancer. The microsatellite markers D8S2323 and D8S2330 exhibited high LOH frequencies, 54.2 and 57.1%, respectively. However, LOH at 8q showed no relationship to either histological types or stages of gastric cancer. Finally, we settled six candidate regions on 8q in gastric cancer where there was a high possibility of being the tumor suppressor gene(s), and concluded that the LOH of 8q occurred in the primary tumorigenesis of gastric cancer.


Asunto(s)
Cromosomas Humanos Par 8 , Genes Supresores de Tumor , Pérdida de Heterocigocidad , Neoplasias Gástricas/genética , Humanos , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa , Neoplasias Gástricas/etiología
13.
Int J Cancer ; 109(1): 71-5, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14735470

RESUMEN

Loss of heterozygosity (LOH) is an important event of tumorigenesis. In gastric cancer, we found a novel region of LOH in chromosome 9q having about 800 kb deletions at 9q31.1. The microsatellite marker D9S938 in that region exhibiting the highest LOH frequency, 56.5%. In addition, the LOH at 9q31.1 did not show any relationship to either histologic types or stages of gastric cancers, and several genes were predicted in the remaining allele by in silico methods. These data suggest that the deletion at 9q31.1 would be common in both differentiated-type and undifferentiated-type gastric cancers. Furthermore, this deletion was found in the primary tumors of early-stage gastric cancer, indicating that loss of function of predicted genes appears to be associated with the tumorigenesis of gastric cancer.


Asunto(s)
Cromosomas Humanos Par 9/ultraestructura , Genes Supresores de Tumor , Neoplasias Gástricas/genética , Diferenciación Celular , Mapeo Cromosómico , Cartilla de ADN/farmacología , Eliminación de Gen , Genoma , Humanos , Pérdida de Heterocigocidad , Repeticiones de Microsatélite , Modelos Genéticos , ARN Mensajero/metabolismo , Programas Informáticos
14.
Med Electron Microsc ; 32(4): 221-225, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11810449

RESUMEN

It has been suggested that the LGN protein is associated with Galphai2 by the yeast two-hybrid system and in vitro pull-down assay. To determine the functions of LGN in the central nervous system, we examined the expression and localization of LGN in mouse brain by immunoblotting and immunofluorescence microscopy. By immunoblotting, almost similar amounts of LGN were detected in the olfactory bulb, cerebral cortex, hippocampus, and cerebellum of the adult mouse brain, and the levels of the postnatal LGN expression in the whole brain were fairly constant. Immunofluorescence microscopy showed that LGN is localized in nuclei of the neurons in the olfactory bulb, cerebral cortex, and hippocampus, but in both nuclei and cytoplasm of Purkinje cells in the cerebellum. On the other hand, Galphai2 was distributed throughout the neuronal elements except for the nuclei. Thus, LGN and Galphai2 were colocalized in the cytoplasm of Purkinje cells, but not in other neurons examined. These results suggest that LGN may be involved not only in the Galphai2-mediated signaling but also in other signaling pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA