Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Med (Lond) ; 4(1): 28, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396065

RESUMEN

BACKGROUND: Vaccinations against the SARS-CoV-2 are still crucial in combating the ongoing pandemic that has caused more than 700 million infections and claimed almost 7 million lives in the past four years. Omicron (B.1.1.529) variants have incurred mutations that challenge the protection against infection and severe disease by the current vaccines, potentially compromising vaccination efforts. METHODS: We analyzed serum samples taken up to 9 months post third dose from 432 healthcare workers. Enzyme-linked immunosorbent assays (ELISA) and microneutralization tests (MNT) were used to assess the prevalence of vaccine-induced neutralizing antibodies against various SARS-CoV-2 Omicron variants. RESULTS: In this serological analysis we show that SARS-CoV-2 vaccine combinations of BNT162b2, mRNA-1273, and ChAdOx1 mount SARS-CoV-2 binding and neutralizing antibodies with similar kinetics, but with differing neutralization capabilities. The most recent Omicron variants, BQ.1.1 and XBB.1.5, show a significant increase in the ability to escape vaccine and infection-induced antibody responses. Breakthrough infections in thrice vaccinated adults were seen in over 50% of the vaccinees, resulting in a stronger antibody response than without infection. CONCLUSIONS: Different three-dose vaccine combinations seem to induce considerable levels of neutralizing antibodies against most SARS-CoV-2 variants. However, the ability of the newer variants BQ1.1 and XBB 1.5 to escape vaccine-induced neutralizing antibody responses underlines the importance of updating vaccines as new variants emerge.


During the COVID-19 pandemic, mass vaccination efforts against SARS-CoV-2 infection have provided effective protection against the virus and helped reduce the severity of symptoms in infected individuals. However, it is not well established whether the existing vaccines can provide the same protection against new and emerging SARS-CoV-2 variants that develop over time as the virus evolves. In this study, we tested combinations of three-dose COVID-19 vaccines given in random order to protect against all SARS-CoV-2 variants in circulation including the newest being Omicron variants. We demonstrate that more than half of the population who received the three-dose vaccine combinations were infected with SARS-CoV-2 Omicron variants after receiving the last vaccine dose. These findings indicate the need to develop new vaccine candidates against emerging SARS-CoV-2 variants.

2.
Viruses ; 15(12)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38140633

RESUMEN

In an age defined by rapid globalization and unprecedented technological advancements, the field of infectious diseases stands at the intersection of complex challenges and promising opportunities [...].


Asunto(s)
Enfermedades Transmisibles , Humanos , Enfermedades Transmisibles/epidemiología
3.
Biomolecules ; 13(10)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37892134

RESUMEN

In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Peptidil-Dipeptidasa A/química , Antivirales/farmacología , Antivirales/uso terapéutico , Internalización del Virus
4.
Cell Rep Methods ; 3(8): 100565, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37671026

RESUMEN

We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The method utilizes machine learning-guided image analysis and enables simultaneous measurement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a low biosafety level and fast adaptation to emerging pathogens. Using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the model pathogen, we demonstrate that this method allows differentiation between vaccine-induced and infection-induced antibody responses. Additionally, we established a dedicated web page for quantitative visualization of sample-specific results and their distribution, comparing them with controls and other samples. Our results provide a proof of concept for the approach, demonstrating fast and accurate measurement of antibody responses in a research setup with prospects for clinical diagnostics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Prueba de COVID-19 , Aclimatación , Aprendizaje Automático
5.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37647113

RESUMEN

Filoviruses encode viral protein 24 (VP24) which effectively inhibit the innate immune responses in infected cells. Here we systematically analysed the effects of nine mammalian filovirus VP24 proteins on interferon (IFN)-induced immune response. We transiently expressed Ebola, Bombali, Bundibugyo, Reston, Sudan and Taï Forest ebolavirus (EBOV, BOMV, BDBV, RESTV, SUDV, TAFV, respectively), Lloviu virus (LLOV), Mengla dianlovirus (MLAV) and Marburgvirus (MARV) VP24 proteins and analysed their ability to inhibit IFN-α-induced activation of myxovirus resistance protein 1 (MxA) and interferon-induced transmembrane protein 3 (IFITM3) promoters. In addition, we analysed the expression of endogenous MxA protein in filovirus VP24-expressing cells. Eight filovirus VP24 proteins, including the VP24s of the recently discovered MLAV, BOMV and LLOV, inhibited IFN-induced MxA and IFITM3 promoter activation. MARV VP24 was the only protein with no inhibitory effect on the activation of either promoter. Endogenous MxA protein expression was impaired in cells transiently expressing VP24s with the exception of MARV VP24. We mutated nuclear localization signal (NLS) of two highly pathogenic filoviruses (EBOV and SUDV) and two putatively non-pathogenic filoviruses (BOMV and RESTV), and showed that the inhibitory effect on IFN-induced expression of MxA was dependent on functional cluster 3 of VP24 nuclear localization signal. Our findings suggest that filovirus VP24 proteins are both genetically and functionally conserved, and that VP24 proteins of most filovirus species are capable of inhibiting IFN-induced antiviral gene expression thereby efficiently downregulating the host innate immune responses.


Asunto(s)
Ebolavirus , Marburgvirus , Animales , Señales de Localización Nuclear , Inmunidad Innata , Interferón-alfa , Antivirales , Marburgvirus/genética , Proteínas de la Matriz Viral , Mamíferos
6.
Sci Rep ; 13(1): 8416, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225867

RESUMEN

The prevalence of seasonal human coronavirus (HCoV) infections in early childhood and adults has not been well analyzed in longitudinal serological studies. Here we analyzed the changes in HCoV (229E, HKU1, NL63, OC43, MERS, and SARS-CoV-2) spike-specific antibody levels in follow-up serum specimens of 140 children at the age of 1, 2, and 3 years, and of 113 healthcare workers vaccinated for Covid-19 with BNT162b2-vaccine. IgG antibody levels against six recombinant HCoV spike subunit 1 (S1) proteins were measured by enzyme immunoassay. We show that by the age of three years the cumulative seropositivity for seasonal HCoVs increased to 38-81% depending on virus type. BNT162b2 vaccinations increased anti-SARS-CoV-2 S1 antibodies, but no increase in seasonal coronavirus antibodies associated with vaccinations. In healthcare workers (HCWs), during a 1-year follow-up, diagnostic antibody rises were seen in 5, 4 and 14% of the cases against 229E, NL63 and OC43 viruses, respectively, correlating well with the circulating HCoVs. In 6% of the HCWs, a diagnostic antibody rise was seen against S1 of HKU1, however, these rises coincided with anti-OC43 S1 antibody rises. Rabbit and guinea pig immune sera against HCoV S1 proteins indicated immunological cross-reactivity within alpha-CoV (229E and NL63) and beta-CoV (HKU1 and OC43) genera.


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Coronavirus Humano 229E , Adulto , Niño , Humanos , Preescolar , Lactante , Animales , Cobayas , Conejos , Reinfección , Vacuna BNT162 , Glicoproteína de la Espiga del Coronavirus , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales , Personal de Salud
7.
Front Immunol ; 14: 1099246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756112

RESUMEN

Introduction: The prime-boost COVID-19 mRNA vaccination strategy has proven to be effective against severe COVID-19 disease and death. However, concerns have been raised due to decreasing neutralizing antibody levels after COVID-19 vaccination and due to the emergence of new immuno-evasive SARS-CoV-2 variants that may require additional booster vaccinations. Methods: In this study, we analyzed the humoral and cell-mediated immune responses against the Omicron BA.1 and BA.2 subvariants in Finnish healthcare workers (HCWs) vaccinated with three doses of COVID-19 mRNA vaccines. We used enzyme immunoassay and microneutralization test to analyze the levels of SARS-CoV-2 specific IgG antibodies in the sera of the vaccinees and the in vitro neutralization capacity of the sera. Activation induced marker assay together with flow cytometry and extracellular cytokine analysis was used to determine responses in SARS-CoV-2 spike protein stimulated PBMCs. Results: Here we show that within the HCWs, the third mRNA vaccine dose recalls both humoral and T cell-mediated immune responses and induces high levels of neutralizing antibodies against Omicron BA.1 and BA.2 variants. Three weeks after the third vaccine dose, SARS-CoV-2 wild type spike protein-specific CD4+ and CD8+ T cells are observed in 82% and 71% of HCWs, respectively, and the T cells cross-recognize both Omicron BA.1 and BA.2 spike peptides. Although the levels of neutralizing antibodies against Omicron BA.1 and BA.2 decline 2.5 to 3.8-fold three months after the third dose, memory CD4+ T cell responses are maintained for at least eight months post the second dose and three months post the third vaccine dose. Discussion: We show that after the administration of the third mRNA vaccine dose the levels of both humoral and cell-mediated immune responses are effectively activated, and the levels of the spike-specific antibodies are further elevated compared to the levels after the second vaccine dose. Even though at three months after the third vaccine dose antibody levels in sera decrease at a similar rate as after the second vaccine dose, the levels of spike-specific CD4+ and CD8+ T cells remain relatively stable. Additionally, the T cells retain efficiency in cross-recognizing spike protein peptide pools derived from Omicron BA.1 and BA.2 subvariants. Altogether our results suggest durable cellmediated immunity and protection against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunidad Celular , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
8.
Anal Bioanal Chem ; 414(15): 4509-4518, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35581427

RESUMEN

Viruses play a major role in modern society and create risks from global pandemics and bioterrorism to challenges in agriculture. Virus infectivity assays and genome copy number determination methods are often used to obtain information on virus preparations used in diagnostics and vaccine development. However, these methods do not provide information on virus particle count. Current methods to measure the number of viral particles are often cumbersome and require highly purified virus preparations and expensive instrumentation. To tackle these problems, we developed a simple and cost-effective time-resolved luminescence-based method for virus particle quantification. This mix-and-measure technique is based on the recognition of the virus particles by an external Eu3+-peptide probe, providing results on virus count in minutes. The method enables the detection of non-enveloped and enveloped viruses, having over tenfold higher detectability for enveloped, dynamic range from 5E6 to 3E10 vp/mL, than non-enveloped viruses. Multiple non-enveloped and enveloped viruses were used to demonstrate the functionality and robustness of the Protein-Probe method.


Asunto(s)
Virosis , Virus , Humanos , Luminiscencia , Virión
9.
Front Immunol ; 13: 869990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529867

RESUMEN

The emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made it more difficult to prevent the virus from spreading despite available vaccines. Reports of breakthrough infections and decreased capacity of antibodies to neutralize variants raise the question whether current vaccines can still protect against COVID-19 disease. We studied the dynamics and persistence of T cell responses using activation induced marker (AIM) assay and Th1 type cytokine production in peripheral blood mononuclear cells obtained from BNT162b2 COVID-19 mRNA vaccinated health care workers and COVID-19 patients. We demonstrate that equally high T cell responses following vaccination and infection persist at least for 6 months against Alpha, Beta, Gamma, and Delta variants despite the decline in antibody levels.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Leucocitos Mononucleares , ARN Mensajero/genética , Glicoproteína de la Espiga del Coronavirus , Linfocitos T
10.
Nat Commun ; 13(1): 2476, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513437

RESUMEN

Two COVID-19 mRNA (of BNT162b2, mRNA-1273) and two adenovirus vector vaccines (ChAdOx1 and Janssen) are licensed in Europe, but optimization of regime and dosing is still ongoing. Here we show in health care workers (n = 328) that two doses of BNT162b2, mRNA-1273, or a combination of ChAdOx1 adenovirus vector and mRNA vaccines administrated with a long 12-week dose interval induce equally high levels of anti-SARS-CoV-2 spike antibodies and neutralizing antibodies against D614 and Delta variant. By contrast, two doses of BNT162b2 with a short 3-week interval induce 2-3-fold lower titers of neutralizing antibodies than those from the 12-week interval, yet a third BNT162b2 or mRNA-1273 booster dose increases the antibody levels 4-fold compared to the levels after the second dose, as well as induces neutralizing antibody against Omicron BA.1 variant. Our data thus indicates that a third COVID-19 mRNA vaccine may induce cross-protective neutralizing antibodies against multiple variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
11.
Microbiol Spectr ; 10(3): e0196721, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35481830

RESUMEN

Seasonal human coronaviruses (HCoVs) cause respiratory infections, especially in children. Currently, the knowledge on early childhood seasonal coronavirus infections and the duration of antibody levels following the first infections is limited. Here we analyzed serological follow-up samples to estimate the rate of primary infection and reinfection(s) caused by seasonal coronaviruses in early childhood. Serum specimens were collected from 140 children at ages of 13, 24, and 36 months (1, 2, and 3 years), and IgG antibody levels against recombinant HCoV nucleoproteins (N) were measured by enzyme immunoassay (EIA). Altogether, 84% (118/140) of the children were seropositive for at least one seasonal coronavirus N by the age of 3 years. Cumulative seroprevalences for HCoVs 229E, HKU1, NL63, and OC43 increased by age, and they were 45%, 27%, 70%, and 44%, respectively, at the age of 3 years. Increased antibody levels between yearly samples indicated reinfections by 229E, NL63, and OC43 viruses in 20-48% of previously seropositive children by the age of 3 years. Antibody levels declined 54-73% or 31-77% during the year after seropositivity in children initially seropositive at 1 or 2 years of age, respectively, in case there was no reinfection. The correlation of 229E and NL63, and OC43 and HKU1 EIA results, suggested potential cross-reactivity between the N specific antibodies inside the coronavirus genera. The data shows that seasonal coronavirus infections and reinfections are common in early childhood and the antibody levels decline relatively rapidly. IMPORTANCE The rapid spread of COVID-19 requires better knowledge on the rate of coronavirus infections and coronavirus specific antibody responses in different population groups. In this work we analyzed changes in seasonal human coronavirus specific antibodies in young children participating in a prospective 3-year serological follow-up study. We show that based on seropositivity and changes in serum coronavirus antibody levels, coronavirus infections and reinfections are common in early childhood and the antibodies elicited by the infection decline relatively rapidly. These observations provide further information on the characteristics of humoral immune responses of coronavirus infections in children.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Anticuerpos Antivirales , Niño , Preescolar , Estudios de Seguimiento , Humanos , Estudios Prospectivos , Reinfección , Estaciones del Año
12.
Microbiol Spectr ; 10(2): e0225221, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35262410

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concern about increased transmissibility, infectivity, and immune evasion from a vaccine and infection-induced immune responses. Although COVID-19 mRNA vaccines have proven to be highly effective against severe COVID-19 disease, the decrease in vaccine efficacy against emerged Beta and Delta variants emphasizes the need for constant monitoring of new virus lineages and studies on the persistence of vaccine-induced neutralizing antibodies. To analyze the dynamics of COVID-19 mRNA vaccine-induced antibody responses, we followed 52 health care workers in Finland for 6 months after receiving two doses of BNT162b2 vaccine with a 3-week interval. We demonstrate that, although anti-S1 antibody levels decrease 2.3-fold compared to peak antibody levels, anti-SARS-CoV-2 antibodies persist for months after BNT162b2 vaccination. Variants D614G, Alpha, and Eta are neutralized by sera of 100% of vaccinees, whereas neutralization of Delta is 3.8-fold reduced and neutralization of Beta is 5.8-fold reduced compared to D614G. Despite this reduction, 85% of sera collected 6 months postvaccination neutralizes Delta variant. IMPORTANCE A decrease in vaccine efficacy against emerging SARS-CoV-2 variants has increased the importance of assessing the persistence of SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies. Our data show that after 6 months post two doses of BNT162b2 vaccine, antibody levels decrease yet remain detectable and capable of neutralizing emerging variants. By monitoring the vaccine-induced antibody responses, vaccination strategies and administration of booster doses can be optimized.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , ARN Mensajero , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
13.
Infect Dis (Lond) ; 54(6): 448-454, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35045784

RESUMEN

BACKGROUND: Health care workers are at risk of acquiring SARS-CoV-2 infection. Our aim was to study the prevalence of SARS-CoV-2 nucleoprotein and spike protein specific antibodies in health care workers with occupational exposure to COVID-19 in Turku, Finland, from May to December 2020. METHODS: Health care workers of Turku University Hospital units caring for COVID-19 patients or handling clinical SARS-CoV-2 samples were invited to participate in the study. The presence of SARS-CoV-2 nucleoprotein and spike protein specific IgG antibodies were analysed with in-house enzyme immunoassay. RESULTS: At study enrolment, only one of the 222 (0.5%) study participants was seropositive for SARS-CoV-2 protein specific antibodies. Two additional study participants (2/222, 0.9%) seroconverted during the follow-up. All these participants were diagnosed with a RT-PCR-positive COVID-19 infection before turning seropositive. CONCLUSION: In our study population, the prevalence of SARS-CoV-2 seropositivity remained low. The absence of seropositive cases without previous RT-PCR confirmed infections demonstrate good access to diagnostics. In addition to high vaccine coverage, high standards of infection prevention practices and use of standard personal protective equipment seem sufficient in preventing occupational SARS-CoV-2 infection in a setting with low number of circulating virus. However, it remains unclear whether similar protective practices would also be effective against more transmissible SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/epidemiología , COVID-19/prevención & control , Finlandia/epidemiología , Personal de Salud , Humanos , Nucleoproteínas , Estudios Prospectivos , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus , Vacunación
14.
Microbiol Spectr ; 9(3): e0113121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34787485

RESUMEN

Validation and standardization of accurate serological assays are crucial for the surveillance of the coronavirus disease 2019 (COVID-19) pandemic and population immunity. We describe the analytical and clinical performance of an in-house fluorescent multiplex immunoassay (FMIA) for simultaneous quantification of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein and spike glycoprotein. Furthermore, we calibrated IgG-FMIA against World Health Organization (WHO) International Standard and compared FMIA results to an in-house enzyme immunoassay (EIA) and a microneutralization test (MNT). We also compared the MNT results of two laboratories. IgG-FMIA displayed 100% specificity and sensitivity for samples collected 13 to 150 days post-onset of symptoms (DPO). For IgA- and IgM-FMIA, 100% specificity and sensitivity were obtained for a shorter time window (13 to 36 and 13 to 28 DPO for IgA- and IgM-FMIA, respectively). FMIA and EIA results displayed moderate to strong correlation, but FMIA was overall more specific and sensitive. IgG-FMIA identified 100% of samples with neutralizing antibodies (NAbs). Anti-spike IgG concentrations correlated strongly (ρ = 0.77 to 0.84, P < 2.2 × 10-16) with NAb titers, and the two laboratories' NAb titers displayed a very strong correlation (ρ = 0.95, P < 2.2 × 10-16). Our results indicate good correlation and concordance of antibody concentrations measured with different types of in-house SARS-CoV-2 antibody assays. Calibration against the WHO international standard did not, however, improve the comparability of FMIA and EIA results. IMPORTANCE SARS-CoV-2 serological assays with excellent clinical performance are essential for reliable estimation of the persistence of immunity after infection or vaccination. In this paper we present a thoroughly validated SARS-CoV-2 serological assay with excellent clinical performance and good comparability to neutralizing antibody titers. Neutralization tests are still considered the gold standard for SARS-CoV-2 serological assays, but our assay can identify samples with neutralizing antibodies with 100% sensitivity and 96% specificity without the need for laborious and slow biosafety level 3 (BSL-3) facility-requiring analyses.


Asunto(s)
Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19/métodos , Técnica del Anticuerpo Fluorescente/métodos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Proteínas de la Nucleocápside/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/inmunología , Humanos , Nucleoproteínas , Fosfoproteínas/inmunología , SARS-CoV-2 , Sensibilidad y Especificidad
15.
Microbiol Spectr ; 9(1): e0077421, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34378952

RESUMEN

The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.


Asunto(s)
COVID-19/inmunología , Células Epiteliales/inmunología , Inmunidad Innata , Pulmón/inmunología , SARS-CoV-2/aislamiento & purificación , Replicación Viral/fisiología , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Citocinas/genética , Células Epiteliales/virología , Expresión Génica , Humanos , Interferón Tipo I/genética , Interferones/genética , Cinética , Pulmón/virología , Filogenia , ARN Viral , SARS-CoV-2/clasificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Tripsina , Interferón lambda
16.
Nat Commun ; 12(1): 3991, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183681

RESUMEN

As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the seronegative vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees' neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides evidence that the second dose of the BNT162b2 vaccine induces cross-neutralization of at least some of the circulating SARS-CoV-2 variants.


Asunto(s)
Anticuerpos ampliamente neutralizantes/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/sangre , COVID-19/epidemiología , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Protección Cruzada/inmunología , Femenino , Finlandia/epidemiología , Humanos , Inmunización Secundaria/métodos , Inmunización Secundaria/estadística & datos numéricos , Masculino , Vacunación Masiva/métodos , Vacunación Masiva/estadística & datos numéricos , Persona de Mediana Edad , Pruebas de Neutralización/estadística & datos numéricos , Reinfección/inmunología , Reinfección/prevención & control , Reinfección/virología , SARS-CoV-2/genética , Adulto Joven
17.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33905505

RESUMEN

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/inmunología , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Humanos , Técnicas para Inmunoenzimas , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Pruebas de Neutralización , Fosfoproteínas/inmunología , SARS-CoV-2/inmunología , Sensibilidad y Especificidad
18.
Front Immunol ; 12: 694105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069519

RESUMEN

Filovirus family consists of highly pathogenic viruses that have caused fatal outbreaks especially in many African countries. Previously, research focus has been on Ebola, Sudan and Marburg viruses leaving other filoviruses less well studied. Filoviruses, in general, pose a significant global threat since they are highly virulent and potentially transmissible between humans causing sporadic infections and local or widespread epidemics. Filoviruses have the ability to downregulate innate immunity, and especially viral protein 24 (VP24), VP35 and VP40 have variably been shown to interfere with interferon (IFN) gene expression and signaling. Here we systematically analyzed the ability of VP24 proteins of nine filovirus family members to interfere with retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated antigen 5 (MDA5) induced IFN-ß and IFN-λ1 promoter activation. All VP24 proteins were localized both in the cell cytoplasm and nucleus in variable amounts. VP24 proteins of Zaire and Sudan ebolaviruses, Lloviu, Taï Forest, Reston, Marburg and Bundibugyo viruses (EBOV, SUDV, LLOV, TAFV, RESTV, MARV and BDBV, respectively) were found to inhibit both RIG-I and MDA5 stimulated IFN-ß and IFN-λ1 promoter activation. The inhibition takes place downstream of interferon regulatory factor 3 phosphorylation suggesting the inhibition to occur in the nucleus. VP24 proteins of Mengla (MLAV) or Bombali viruses (BOMV) did not inhibit IFN-ß or IFN-λ1 promoter activation. Six ebolavirus VP24s and Lloviu VP24 bound tightly, whereas MARV and MLAV VP24s bound weakly, to importin α5, the subtype that regulates the nuclear import of STAT complexes. MARV and MLAV VP24 binding to importin α5 was very weak. Our data provides new information on the innate immune inhibitory mechanisms of filovirus VP24 proteins, which may contribute to the pathogenesis of filovirus infections.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Filoviridae/inmunología , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/inmunología , Interferones/inmunología , Interleucinas/inmunología , Regiones Promotoras Genéticas/inmunología , Receptores Inmunológicos/inmunología , Proteínas Virales/inmunología , Línea Celular Tumoral , Proteína 58 DEAD Box/genética , Filoviridae/genética , Regulación de la Expresión Génica/inmunología , Células HEK293 , Humanos , Interferón Tipo I/genética , Helicasa Inducida por Interferón IFIH1/genética , Interferones/genética , Interleucinas/genética , Receptores Inmunológicos/genética , Proteínas Virales/genética
19.
J Virol Methods ; 284: 113941, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32707049

RESUMEN

In last five years, the Africa has faced two outbreaks of Zaire ebolavirus. These outbreaks have been the largest so far, and latest outbreak is still ongoing and affecting the Democratic Republic of the Congo. We tested in parallel three different Zaire ebolavirus (EBOV) realtime RT-PCRs targeting the nucleoprotein gene (EBOV NP-RT-qPCRs) described by Trombley et al. (2010); Huang et al. (2012) and Weidmann et al. (2004). These assays are used regularly in diagnostic laboratories. The limit of detection (LOD), intra-assay repeatability using different matrixes, sensitivity and specificity were determined. In addition, the primers and probes were aligned with the sequences available in ongoing and past outbreaks in order to check the mismatches. The specificity of all three EBOV NP-RT-qPCRs were excellent (100 %), and LODs were under or 10 copies per PCR reaction. Intra-assay repeatability was good in all assays, however the Ct-values were bit higher using the EDTA-blood based matrix. All of the primers and probes in EBOV NP-RT-qPCR assays have one or more mismatches in the probes and primers when the 2267 Zaire EBOV NP sequences, including strains Ituri from DRC outbreak (year 2018), was aligned. The EBOV strain of Bikoro (year 2018) circulating in DRC was 100 % match in Trombley and Weidmann assay, but had one mismatch in Huang assay.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Técnicas de Diagnóstico Molecular , Proteínas de la Nucleocápside/genética , Reacción en Cadena de la Polimerasa , Ebolavirus/genética , Humanos , Límite de Detección , ARN Viral/genética , Sensibilidad y Especificidad
20.
Vaccine ; 38(8): 1933-1942, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31987689

RESUMEN

Influenza A viruses continue to circulate throughout the world as yearly epidemics or occasional pandemics. Influenza infections can be prevented by seasonal multivalent or monovalent pandemic vaccines. In the present study, we describe a novel multiplex microarray immunoassay (MAIA) for simultaneous measurement of virus-specific IgG and IgM antibodies using Pandemrix-vaccinated adult sera collected at day 0 and 28 and 180 days after vaccination as the study material. MAIA showed excellent correlation with a conventional enzyme immunoassay (EIA) in both IgG and IgM anti-influenza A antibodies and good correlation with hemagglutination inhibition (HI) test. Pandemrix vaccine induced 5-30 fold increases in anti-H1N1pdm09 influenza antibodies as measured by HI, EIA or MAIA. A clear increase in virus-specific IgG antibodies was found in 93-97% of vaccinees by MAIA and EIA. Virus-specific IgM antibodies were found in 90-92% of vaccinees by MAIA and EIA, respectively and IgM antibodies persisted for up to 6 months after vaccination in 55-62% of the vaccinees. Pandemic influenza vaccine induced strong anti-influenza A IgG and IgM responses that persisted several months after vaccination. MAIA was demonstrated to be an excellent method for simultaneous measurement of antiviral IgG and IgM antibodies against multiple virus antigens. Thus the method is well suitable for large scale epidemiological and vaccine immunity studies.


Asunto(s)
Anticuerpos Antivirales/inmunología , Inmunogenicidad Vacunal , Vacunas contra la Influenza/inmunología , Gripe Humana , Adulto , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunoensayo , Técnicas para Inmunoenzimas , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Gripe Humana/epidemiología , Gripe Humana/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...