Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 29(7): 3076-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25857554

RESUMEN

Given the need for robust and cost-efficient in vitro models to study angiogenesis and reproducibly analyze potential pro- and antiangiogenic compounds in preclinical studies, we developed a 3-dimensional in vitro angiogenesis assay that is based on collagen gel-embedded, size-defined spheroids generated from cultured human umbilical vein endothelial cells (HUVECs). Despite its wide distribution, limitations, sensitivity, robustness, and improvements, the capacity of this assay for functional screening purposes has not been elucidated thus far. By using time-lapse video microscopy, we show that tip cells lead the formation of capillary-like and partially lumenized sprouts originating from the spheroids. Angiogenic sprouting from spheroids generated from 5 different primary cultured human endothelial cell types was induced by physiologic concentrations of vascular endothelial cell growth factor 165. Based on this assay system, we determined the capacity of 880 approved drugs to interfere with or boost angiogenic sprouting, thereby assessing their putative angiogenesis-related side effects or novel applications. However, although this assay allowed for a rapid and reproducible determination of functional IC50 values of individual compounds, the sprouting results were partially affected by the HUVEC passage number and donor variability. To overcome this limitation, immortalized HUVECs (iHUVECs) showing a more homogenous response in terms of proliferation and sprouting over multiple population doublings were used in the course of this study. Collectively, the spheroid-based angiogenesis assay provides a sensitive and versatile tool to study the impact of pro- and antiangiogenic determinants on multiple steps of the angiogenic cascade. It is compatible with different endothelial cell types and allows use of iHUVECs to improve its overall robustness.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/fisiología , Neovascularización Fisiológica , Esferoides Celulares/citología , Esferoides Celulares/fisiología , Inductores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/farmacología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Células Endoteliales/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Indoles/farmacología , Microscopía por Video , Neovascularización Fisiológica/efectos de los fármacos , Pirroles/farmacología , Proteínas Recombinantes/farmacología , Esferoides Celulares/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología
2.
Dev Dyn ; 241(4): 770-86, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22354871

RESUMEN

BACKGROUND: Angiogenesis is implicated in many pathological conditions. The role of the proteins involved remains largely unknown, and few vascular-specific drug targets have been discovered. Previously, in a screen for angiogenesis regulators, we identified Paladin (mouse: X99384, human: KIAA1274), a protein containing predicted S/T/Y phosphatase domains. RESULTS: We present a mouse knockout allele for Paladin with a ß-galactosidase reporter, which in combination with Paladin antibodies demonstrate that Paladin is expressed in the vasculature. During mouse embryogenesis, Paladin is primarily expressed in capillary and venous endothelial cells. In adult mice Paladin is predominantly expressed in arterial pericytes and vascular smooth muscle cells. Paladin also displays vascular-restricted expression in human brain, astrocytomas, and glioblastomas. CONCLUSIONS: Paladin, a novel putative phosphatase, displays a dynamic expression pattern in the vasculature. During embryonic stages it is broadly expressed in endothelial cells, while in the adult it is selectively expressed in arterial smooth muscle cells.


Asunto(s)
Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Células Endoteliales , Músculo Liso Vascular , Fosfoproteínas Fosfatasas/fisiología , Monoéster Fosfórico Hidrolasas/fisiología , Animales , Vasos Sanguíneos/embriología , Diferenciación Celular/fisiología , Células Endoteliales/fisiología , Humanos , Ratones , Músculo Liso Vascular/embriología , Músculo Liso Vascular/fisiología , Neovascularización Fisiológica/fisiología , Pericitos/citología , Pericitos/fisiología
3.
PLoS One ; 6(4): e18709, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21533193

RESUMEN

The Notch signaling pathway is essential for normal development due to its role in control of cell differentiation, proliferation and survival. It is also critically involved in tumorigenesis and cancer progression. A key enzyme in the activation of Notch signaling is the gamma-secretase protein complex and therefore, gamma-secretase inhibitors (GSIs)--originally developed for Alzheimer's disease--are now being evaluated in clinical trials for human malignancies. It is also clear that Notch plays an important role in angiogenesis driven by Vascular Endothelial Growth Factor A (VEGF-A)--a process instrumental for tumor growth and metastasis. The effect of GSIs on tumor vasculature has not been conclusively determined. Here we report that Compound X (CX), a GSI previously reported to potently inhibit Notch signaling in vitro and in vivo, promotes angiogenic sprouting in vitro and during developmental angiogenesis in mice. Furthermore, CX treatment suppresses tumor growth in a mouse model of renal carcinoma, leads to the formation of abnormal vessels and an increased tumor vascular density. Using a rabbit model of VEGF-A-driven angiogenesis in skeletal muscle, we demonstrate that CX treatment promotes abnormal blood vessel growth characterized by vessel occlusion, disrupted blood flow, and increased vascular leakage. Based on these findings, we propose a model for how GSIs and other Notch inhibitors disrupt tumor blood vessel perfusion, which might be useful for understanding this new class of anti-cancer agents.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Vasos Sanguíneos/crecimiento & desarrollo , Inhibidores Enzimáticos/farmacología , Neovascularización Patológica/prevención & control , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Humanos , Ratones , Conejos
4.
Chem Biol ; 16(4): 432-41, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19389629

RESUMEN

We combined reverse and chemical genetics to identify targets and compounds modulating blood vessel development. Through transcript profiling in mice, we identified 150 potentially druggable microvessel-enriched gene products. Orthologs of 50 of these were knocked down in a reverse genetic screen in zebrafish, demonstrating that 16 were necessary for developmental angiogenesis. In parallel, 1280 pharmacologically active compounds were screened in a human cell-based assay, identifying 28 compounds selectively inhibiting endothelial sprouting. Several links were revealed between the results of the reverse and chemical genetic screens, including the serine/threonine (S/T) phosphatases ppp1ca, ppp1cc, and ppp4c and an inhibitor of this gene family; Endothall. Our results suggest that the combination of reverse and chemical genetic screens, in vertebrates, is an efficient strategy for the identification of drug targets and compounds that modulate complex biological systems, such as angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/genética , Neovascularización Fisiológica/efectos de los fármacos , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Inhibidores de la Angiogénesis/metabolismo , Animales , Células Cultivadas , Ácidos Dicarboxílicos/metabolismo , Evaluación Preclínica de Medicamentos , Células Endoteliales/citología , Regulación de la Expresión Génica , Humanos , Ratones , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Pez Cebra
5.
Nature ; 445(7129): 776-80, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17259973

RESUMEN

In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.


Asunto(s)
Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Receptor Notch1/metabolismo , Transducción de Señal , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/deficiencia , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Receptor Notch1/deficiencia , Retina/citología , Retina/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Am J Pathol ; 162(3): 721-9, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12598306

RESUMEN

All blood capillaries consist of endothelial tubes surrounded by mural cells referred to as pericytes. The origin, recruitment, and function of the pericytes is poorly understood, but the importance of these cells is underscored by the severe cardiovascular defects in mice genetically devoid of factors regulating pericyte recruitment to embryonic vessels, and by the association between pericyte loss and microangiopathy in diabetes mellitus. A general problem in the study of pericytes is the shortage of markers for these cells. To identify new markers for pericytes, we have taken advantage of the platelet-derived growth factor (PDGF)-B knockout mouse model, in which developing blood vessels in the central nervous system are almost completely devoid of pericytes. Using cDNA microarrays, we analyzed the gene expression in PDGF-B null embryos in comparison with corresponding wild-type embryos and searched for down-regulated genes. The most down-regulated gene present on our microarray was RGS5, a member of the RGS family of GTPase-activating proteins for G proteins. In situ hybridization identified RGS5 expression in brain pericytes, and in pericytes and vascular smooth muscle cells in certain other, but not all, locations. Absence of RGS5 expression in PDGF-B and PDGFR beta-null embryos correlated with pericyte loss in these mice. Residual RGS5 expression in rare pericytes suggested that RGS5 is a pericyte marker expressed independently of PDGF-B/R beta signaling. With RGS5 as a proof-of-principle, our data demonstrate the usefulness of microarray analysis of mouse models for abnormal pericyte development in the identification of new pericyte-specific markers.


Asunto(s)
Músculo Liso Vascular/embriología , Pericitos/citología , Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas RGS/análisis , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transcripción Genética , Animales , Becaplermina , Biomarcadores , Dermatoglifia del ADN , Embrión de Mamíferos , Femenino , Proteínas de Unión al GTP/genética , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Crecimiento Derivado de Plaquetas/deficiencia , Factor de Crecimiento Derivado de Plaquetas/fisiología , Embarazo , Proteínas Proto-Oncogénicas c-sis , Proteínas RGS/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/deficiencia , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/fisiología
7.
EMBO J ; 21(16): 4307-16, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12169633

RESUMEN

Loss of pericytes from the capillary wall is a hallmark of diabetic retinopathy, however, the pathogenic significance of this phenomenon is unclear. In previous mouse gene knockout models leading to pericyte deficiency, prenatal lethality has so far precluded analysis of postnatal consequences in the retina. We now report that endothelium-restricted ablation of platelet-derived growth factor-B generates viable mice with extensive inter- and intra-individual variation in the density of pericytes throughout the CNS. We found a strong inverse correlation between pericyte density and the formation of a range of retinal microvascular abnormalities strongly reminiscent of those seen in diabetic humans. Proliferative retinopathy invariably developed when pericyte density was <50% of normal. Our data suggest that a reduction of the pericyte density is sufficient to cause retinopathy in mice, implying that pericyte loss may also be a causal pathogenic event in human diabetic retinopathy.


Asunto(s)
Retinopatía Diabética/patología , Pericitos/patología , Proteínas Proto-Oncogénicas c-sis/deficiencia , Animales , Encéfalo/metabolismo , Encéfalo/patología , Capilares/patología , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Marcación de Gen , Ratones , Ratones Transgénicos , Pericitos/metabolismo , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , Retina/patología , Vasos Retinianos/patología
8.
Am J Pathol ; 160(3): 801-13, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11891179

RESUMEN

Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.


Asunto(s)
Embrión de Mamíferos/fisiología , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/biosíntesis , Animales , Embrión de Mamíferos/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Rayos Láser , Ratones , Ratones Endogámicos C57BL , Micromanipulación , Embarazo , ARN Mensajero/análisis , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA