Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(19): e2206585, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36849168

RESUMEN

A long-standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3 have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect-bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3 . The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first-principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi-functional devices via spin-photon transduction.

2.
Inorg Chem ; 61(48): 19058-19066, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36414026

RESUMEN

We report the successful growth of high-quality single crystals of Sr0.94Mn0.86Te1.14O6 (SMTO) using a self-flux method. The structural, electronic, and magnetic properties of SMTO are investigated by neutron powder diffraction (NPD), single-crystal X-ray diffraction (SCXRD), thermodynamic, and nuclear magnetic resonance techniques in conjunction with density functional theory calculations. NPD unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations with the chiral space group P312 (no. 149), which is further confirmed by SCXRD data. The Mn and Te elements occupy distinct Wyckoff sites, and minor anti-site defects were observed in both sites. X-ray photoelectron spectroscopy reveals the existence of mixed valence states of Mn in SMTO. The magnetic susceptibility and specific heat data evidence a weak antiferromagnetic order at TN = 6.6 K. The estimated Curie-Weiss temperature θCW = -21 K indicates antiferromagnetic interaction between Mn ions. Furthermore, both the magnetic entropy and the 125Te nuclear spin-lattice relaxation rate showcase that short-range spin correlations persist well above the Néel temperature. Our work demonstrates that Sr0.94(2)Mn0.86(3)Te1.14(3)O6 single crystals realize a noncentrosymmetric triangular antiferromagnet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...