Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398565

RESUMEN

Ultrasonic absorption measurements were carried out over a wide concentration and temperature range by means of a pulse technique to examine the structural mechanisms and the dynamical properties in lithium hexamethyldisilazide (LiHMDS)-toluene solutions. Acoustic spectra revealed two distinct Debye-type relaxational absorptions attributed to the formation of trimers from dimeric and monomer units and to the formation of aggregates between a LiHMDS dimer and one toluene molecule in low and high frequencies, respectively. The formation of aggregates was clarified by means of molecular docking and DFT methodologies. The aggregation number, the rate constants and the thermodynamic properties of these structural changes were determined by analyzing in detail the concentration-dependent relaxation parameters. The low-frequency relaxation mechanism dominates the acoustic spectra in the high LiHMDS mole fractions, while the high-frequency relaxation influences the spectra in the low LiHMDS mole fractions. In the intermediate mole fraction region (0.25 to 0.46), both relaxations prevail in the spectra. The adiabatic compressibility, the excess adiabatic compressibility and the theoretically estimated mean free length revealed a crossover in the 0.25 to 0.46 LiHMDS mole fractions that signified the transition from one structural mechanism related with the hetero-association of LiHMDS dimers with toluene molecules to the other structural mechanism assigned to the formation of LiHMDS trimers. The combined use of acoustic spectroscopy with theoretical calculations permitted us to disentangle the underlying structural mechanisms and evaluate the volume changes associated with each reaction. The results were compared with the corresponding theoretically predicted volume changes and discussed in the context of the concentration effect on intermolecular bonding.

2.
Molecules ; 28(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067565

RESUMEN

Raman scattering has been employed to study in detail the concentration dependence of the vibrational modes for hexamethylenetetramine (HMTA) aqueous solutions. The formation of protonated and/or aggregated species has been clarified by comparing the experimental with the theoretically predicted vibrational spectra by means of quantum mechanical calculations. The analysis has shown that the vibrational modes of the solutions arise from a contribution of the vibrational modes of the HMTA self-aggregates and hetero-aggregates of HMTA with water molecules that are formed in the low- and intermediate-concentration regions, respectively. The protonation of HMTA is ruled out due to the large differences between the experimental and the theoretically calculated spectra of the protonated molecules of HTMA in the fingerprint region. In the low-concentration solutions, the hetero-aggregation reaction of HMTA with water is the dominant mechanism, while at higher concentrations, a self-aggregation mechanism occurs. Ultrasonic absorption and velocity measurements were carried out for hexamethylenetetramine aqueous solutions. The acoustic spectra reveal the presence of only one single Debye-type relaxation process that is assigned to the aggregation mechanism of HMTA. The sound absorption data follow two different dependencies on the HMTA mole fraction. The crossover 0.018 mole fraction signifies two separate regions with distinct structural characteristics. The relaxation mechanism observed in dilute solutions was attributed to hetero-association of HMTA with water molecules, while at higher concentrations, the observed relaxation process was assigned to the self-association reaction of HMTA molecules. This structural transformation is also reflected in several physicochemical properties of the system, including the kinematic viscosity, the mass density, the sound speed and the adiabatic compressibility of the HMTA aqueous solutions. The combination of vibrational and acoustic spectroscopies with molecular orbital calculations allowed us to disentangle the underlying processes and to elucidate the observed relaxation mechanism in the HMTA aqueous solutions.

3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894836

RESUMEN

The low water solubility of aspirin (ASPH) is well known, creating research challenges regarding both its composition and its delivery. Therefore, the development of new aspirin-based formulations that are water soluble is a research, technological, and financial issue. With the aim to improve the water solubility of ASPH, the micelle of formula SLS@ASPH (SLS = Sodium Lauryl Sulfate) was formed. The Critical Micelle Concentration (CMC) of SLS in the presence of ASPH was determined by ultrasonic velocity, complementary, and transient birefringence measurements. The SLS@ASPH was characterized by the melting point (m.p.), attenuated total reflection spectroscopy (FT-IR-ATR), and X-ray fluorescence spectroscopy (XRF) in a solid state and in a solution by ultraviolet-visible (UV-Vis) and 1H NMR spectroscopies. The SLS/ASPH molar ratio was determined to be 5/1 in SLS@ASPH. The inhibitory activity of SLS@ASPH towards lipoxygenase (LOX), an enzyme that takes part in the inflammation mechanism, was studied. The inhibitory activity of SLS@ASPH against LOX is 3.5-fold stronger than that of free SLS. The in vitro toxicity of the SLS@ASPH was tested on immortalized human keratinocyte (HaCaT) cells.


Asunto(s)
Micelas , Tensoactivos , Humanos , Tensoactivos/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Dodecil Sulfato de Sodio/química , Antiinflamatorios no Esteroideos/farmacología , Aspirina , Agua/química
4.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687113

RESUMEN

Fourier-transform infrared (FTIR) spectra of isopentyl-alcohol dissolved in carbon tetrachloride (CCl4) were recorded as a function of concentration and temperature. Dilute isopentyl alcohol/CCl4 solutions were prepared in alcohol at concentrations of 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.001 and 0.0005 M. Infrared absorption measurements were taken within a temperature range of 17-67 °C below the boiling point of the solutions. Decomposition of the spectral features corresponding to associated and unassociated species was performed to quantitatively follow the effect of temperature and concentration on intermolecular hydrogen bonding (HB) in isopentyl alcohol. The spectral feature in the 3600-3650 cm-1 frequency range attributed to the free OH stretching band was studied in detail to determine changes based on concentration and temperature variations. Computational methodologies were applied to evaluate the energetics and vibrational properties of the species involved in the structure in the gaseous state where no interactions are present. The results are discussed in view of relevant structural models to gain quantitative information concerning the effect of concentration and temperature on intermolecular hydrogen bonding.

5.
Antibiotics (Basel) ; 12(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830132

RESUMEN

The polypeptide Nisin is characterized by antibacterial properties, making it a compound with many applications, mainly in the food industry. As a result, a deeper understanding of its behaviour, especially after its dissolution in water, is of the utmost importance. This could be possible through the study of aqueous solutions of Nisin by combining vibrational and acoustic spectroscopic techniques. The velocity and attenuation of ultrasonic waves propagating in aqueous solutions of the polypeptide Nisin were measured as a function of concentration and temperature. The computational investigation of the molecular docking between Nisin monomeric units revealed the formation of dimeric units. The main chemical changes occurring in Nisin structure in the aqueous environment were tracked using Raman spectroscopy, and special spectral markers were used to establish the underlying structural mechanism. Spectral changes evidenced the presence of the dimerization reaction between Nisin monomeric species. The UV/Vis absorption spectra were dominated by the presence of π → π* transitions in the peptide bonds attributed to secondary structural elements such as α-helix, ß-sheets and random coils. The analysis of the acoustic spectra revealed that the processes primarily responsible for the observed chemical relaxations are probably the conformational change between possible conformers of Nisin and its self-aggregation mechanism, namely, the dimerization reaction. The activation enthalpy and the enthalpy difference between the two isomeric forms were estimated to be equal to ΔH1* = 0.354 ± 0.028 kcal/mol and ΔH10 = 3.008 ± 0.367 kcal/mol, respectively. The corresponding thermodynamic parameters of the self-aggregation mechanism were found to be ΔH2* = 0.261 ± 0.004 kcal/mol and ΔH20 = 3.340 ± 0.364 kcal/mol. The effect of frequency on the excess sound absorption of Nisin solutions enabled us to estimate the rate constants of the self-aggregation mechanism and evaluate the isentropic and isothermal volume changes associated with the relaxation processes occurring in this system. The results are discussed in relation to theoretical and experimental findings.

6.
Molecules ; 28(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36770813

RESUMEN

The formation of the inclusion complex between ß-cyclodextrin (CD) and phenolphthalein (PP) was investigated by means of UV-Vis and FT-IR spectroscopies. The thermodynamic parameters were calculated in the absence and presence of LiI, KI, NaI and CsI iodide salts. The enthalpy change during the formation was found to be negative for all solutions with iodide salts. The enthalpy change was found to decrease in the sequence no salt > NaI > KI> CsI > LiI. Moreover, it was observed that with increasing salt concentration enthalpy decreases monotonically. The interaction between the two molecules was mostly attributed to hydrogen bonding and Van der Waals interactions. Thermodynamic properties revealed that electrostatic forces also contribute when LiI is present in solutions. A molecular docking study was performed to elucidate the docking between phenolphthalein and cyclodextrin. The FT-IR spectra of CD, PP and the CD-PP complex were recorded to establish the formation of the inclusion complex. Semi-empirical and DFT methods were utilized to study theoretically the complexation process and calculate the IR vibrational spectra. The adequate agreement between theoretical and experimental results supports the proposed structural model for the CD-PP complexation.

7.
Dalton Trans ; 51(36): 13808-13825, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36039685

RESUMEN

The novel binuclear η6-arene-Ru(II) complexes with the general formula {[(η6-cym)Ru(L)]2(µ-BL)}(PF6)4, and their corresponding water soluble {[(η6-cym)Ru(L)]2(µ-BL)}Cl4, where cym = p-cymene, L = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), BL = 4,4'-bipyridine (BL-1), 1,2-bis(4-pyridyl)ethane (BL-2) and 1,3-bis(4-pyridyl)propane (BL-3), were synthesized and characterized. The structure of {[(η6-cym)Ru(phen)]2(µ-BL-1)}(PF6)4 was determined by X-ray single crystal methods. The interaction of {[(η6-cym)Ru(phen)]2(µ-BL-i)}Cl4 (i = 1, 2, 3; (4), (5) and (6) correspondingly) with the DNA duplex d(5'-CGCGAATTCGCG-3')2 was studied by means of NMR techniques and fluorescence titrations. The results show that complex (4) binds with a Kb = 12.133 × 103 M-1 through both intercalation and groove binding, while (5) and (6) are groove binders (Kb = 2.333 × 103 M-1 and Kb = 3.336 × 103 M-1 correspondingly). Comparison with the mononuclear complex [(η6-cym)Ru(phen)(py)]2+ reveals that it binds to the d(5'-CGCGAATTCGCG-3')2 with a Kb value two orders of magnitude lower than (4) (Kb = 0.158 × 103 M-1), indicating that for the binuclear complexes both ruthenium moieties participate in the binding. The complexes were found to be cytotoxic against the A2780 and A2780 res. cancer cell line with a selectivity index (SI) in the range of 3.0-5.9.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Rutenio , 2,2'-Dipiridil/farmacología , Antineoplásicos/química , Línea Celular Tumoral , ADN/química , Etano , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Fenantrolinas , Rutenio/química , Agua
8.
Molecules ; 26(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34577059

RESUMEN

The siderophore organic ligand N,2-dihydroxybenzamide (H2dihybe) incorporates the hydroxamate group, in addition to the phenoxy group in the ortho-position and reveals a very rich coordination chemistry with potential applications in medicine, materials, and physical sciences. The reaction of H2dihybe with TiCl4 in methyl alcohol and KOH yielded the tetranuclear titanium oxo-cluster (TOC) [TiIV4(µ-O)2(HOCH3)4(µ-Hdihybe)4(Hdihybe)4]Cl4∙10H2O∙12CH3OH (1). The titanium compound was characterized by single-crystal X-ray structure analysis, ESI-MS, 13C, and 1H NMR spectroscopy, solid-state and solution UV-Vis, IR vibrational, and luminescence spectroscopies and molecular orbital calculations. The inorganic core Ti4(µ-O)2 of 1 constitutes a rare structural motif for discrete TiIV4 oxo-clusters. High-resolution ESI-MS studies of 1 in methyl alcohol revealed the presence of isotopic distribution patterns which can be attributed to the tetranuclear clusters containing the inorganic core {Ti4(µ-O)2}. Solid-state IR spectroscopy of 1 showed the presence of an intense band at ~800 cm-1 which is absent in the spectrum of the H2dihybe and was attributed to the high-energy ν(Ti2-µ-O) stretching mode. The ν(C=O) in 1 is red-shifted by ~10 cm-1, while the ν(N-O) is blue-shifted by ~20 cm-1 in comparison to H2dihybe. Density Functional Theory (DFT) calculations reveal that in the experimental and theoretically predicted IR absorbance spectra of the ligand and Ti-complex, the main bands observed in the experimental spectra are also present in the calculated spectra supporting the proposed structural model. 1H and 13C NMR solution (CD3OD) studies of 1 reveal that it retains its integrity in CD3OD. The observed NMR changes upon addition of base to a CD3OD solution of 1, are due to an acid-base equilibrium and not a change in the TiIV coordination environment while the decrease in the complex's lability is due to the improved electron-donating properties which arise from the ligand deprotonation. Luminescence spectroscopic studies of 1 in solution reveal a dual narrow luminescence at different excitation wavelengths. The TOC 1 exhibits a band-gap of 1.98 eV which renders it a promising candidate for photocatalytic investigations.

9.
J Inorg Biochem ; 217: 111393, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33610031

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The main pathophysiological mechanisms involve cholinergic neurotransmission, beta-amyloid (Αß) and Tau proteins, several metal ions and oxidative stress, among others. Current drugs offer only relief of symptoms and not a cure of AD. Accumulating evidence suggests that multifunctional compounds, targeting multiple pathophysiological mechanisms, may have a great potential for the treatment of AD. In this study, we report on the synthesis and physicochemical characterization of four quinoline-based metal chelators and their respective copper(II) complexes. Most compounds were non-toxic at concentrations ≤5 µM. In neuroprotection studies employing undifferentiated and differentiated SH-SY5Y cells, the metal chelator N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (H2dqpyca) appeared to exert significant neuroprotection against both, Aß peptide- and H2O2-induced toxicities. The copper(II) complex [CuII(H2bqch)Cl2].3H2O (H2bqch = N,N'-Bis(8-quinolyl)cyclohexane-1,2-diamine) also protected against H2O2-induced toxicity, with a half-maximal effective concentration of 80 nM. Molecular docking simulations, using the crystal structure of the acetylcholinesterase (AChE)-rivastigmine complex as a template, indicated a strong interaction of the metal chelator H2dqpyca, followed by H2bqch, with both the peripheral anionic site and the catalytic active site of AChE. In conclusion, the sufficient neuroprotection provided by the metal chelator H2dqpyca and the copper(II) complex [CuII(H2bqch)Cl2].3H2O along with the evidence for interaction between H2dqpyca and AChE, indicate that these compounds have the potential and should be further investigated in the framework of preclinical studies employing animal models of AD as candidate multifunctional lead compounds for the treatment of the disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Complejos de Coordinación/farmacología , Fármacos Neuroprotectores/farmacología , Quinolinas/farmacología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Células CHO , Dominio Catalítico , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/toxicidad , Cobre/química , Cricetulus , Humanos , Peróxido de Hidrógeno/toxicidad , Ligandos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/toxicidad , Unión Proteica , Quinolinas/síntesis química , Quinolinas/metabolismo , Quinolinas/toxicidad
10.
Antibiotics (Basel) ; 9(1)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941048

RESUMEN

Conjugation of penicillin G (PenH) with silver(I) ions forms a new CoMeD (conjugate of metal with a drug) with formula [Ag(pen)(CH3OH)]2 (PenAg). PenAg was characterized by a plethora of physical and spectroscopic techniques, which include in the solid state m.p.; elemental analysis; X-ray fluorescence (XRF) spectroscopy; scanning electron microscopy (SEM); energy-dispersive X-ray spectroscopy (EDX); FT-IR; and in solution: attenuated total reflection spectroscopy (FT-IR-ATR), UV-Vis, 1H NMR, and atomic absorption (AA). The structure of PenAg was determined by NMR spectroscopy. Silver(I) ions coordinate to the carboxylic group of PenH, while secondary intra-molecular interactions are developed through (i) the nitrogen atom of the amide group in MeOD-d4 or (ii) the sulfur atom in the thietane ring in deuterated dimethyl sulfoxide DMSO-d6. The antibacterial activities of PenAg and the sodium salt of penicillin (PenNa) (the formulation which is clinically used) against Gram positive (Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus)) and Gram negative (Pseudomonas aeruginosa (P. aeuroginosa PAO1)) bacteria were evaluated by the means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ). PenAg inhibits the growth of the Gram negative bacterial strain P. aeuroginosa with a MIC value of 23.00 ± 2.29 µM, in contrast to PenNa, which shows no such activity (>2 mM). The corresponding antimicrobial activities of PenAg against the Gram positive bacteria S. epidermidis and S. aureus are even better than those of PenNa. Moreover, PenAg exhibits no in vivo toxicity against Artemia salina at concentration up to 300 µΜ. The wide therapeutic window and the low toxicity, make PenAg a possible candidate for the development of a new antibiotic.

11.
Dalton Trans ; 48(17): 5551-5559, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30785155

RESUMEN

Reaction of the cyclic ligand (2Z,6Z)-piperidine-2,6-dione dioxime with TiCl4 and KOH yielded the hexanuclear cluster K6[TiIV6(µ3-O)2(µ2-O)3(CH3O)6(µ2-η1,η1,η2-Hpidiox-O,N,O')4(µ2-η1,η1,η2-pidiox-O,N,O')2]·7.5CH3OH possessing a new {Ti6O5} structural motif. The cluster core {Ti6O5} is wrapped by external tripodal imide dioxime ligands, showing good solubility and stability and thus, allowing its solution to be studied by means of electrospray ionization mass spectrometry, electrochemistry and 2D NMR, c. w. EPR and UV-vis spectroscopies. Density Functional Theory (DFT) calculations reveal that the cyclo-Ti3 metallic cores exhibit metallaromaticity which is expected to contribute to the stabilization of this system.

12.
Micromachines (Basel) ; 9(8)2018 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-30424322

RESUMEN

Crystalline TiO2 films were prepared on unheated glass substrates by radio frequency (RF) reactive magnetron sputtering at normal angle of incidence (a = 0°) and at glancing angle (a = 87°). The effect of the glancing angle on the structure, microstructure, and wetting properties of the films was investigated. The inclination of the substrate led to phase transformation of the deposited films from rutile to either rutile/anatase or anatase, depending on the working pressure. Extreme shadowing at 87° results in a remarkable increase of the films' porosity and surface roughness. The mechanism of the glancing-angle-induced crystalline phase formation is thoroughly discussed based on the thermodynamic, kinetic, and geometrical aspects of the nucleation and is related with the microstructural changes. Both crystalline phase and microstructure significantly affect the wetting properties of the TiO2 films. Glancing-angle-deposited anatase TiO2 exhibits a high degree of porosity and roughness, a high rate of UV-induced wettability conversion, and a long-term highly hydrophilic nature in dark. Therefore, anatase TiO2 is potentially a good candidate for applications as dye-sensitized solar cells (DSSC)/perovskite solar cells, microfluidic devices, and self-cleaning surfaces prepared on thermosensitive substrates.

13.
Int J Mol Sci ; 19(7)2018 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30011935

RESUMEN

Two known tin-based polymers of formula {[R3Sn(CH3COO)]n} where R = n-Bu⁻ (1) and R = Ph⁻ (2),were evaluated for their in vitro biological properties. The compounds were characterized via their physical properties and FT-IR, 119Sn Mössbauer, and ¹H NMR spectroscopic data. The molecular structures were confirmed by single-crystal X-Ray diffraction crystallography. The geometry around the tin(IV) ion is trigonal bi-pyramidal. Variations in O⁻Sn⁻O···Sn' torsion angles lead to zig-zag and helical supramolecular assemblies for 1 and 2, respectively. The in vitro cell viability against human breast adenocarcinoma cancer cell lines: MCF-7 positive to estrogens receptors (ERs) and MDA-MB-231 negative to ERs upon their incubation with 1 and 2 was investigated. Their toxicity has been studied against normal human fetal lung fibroblast cells (MRC-5). Compounds 1 and 2 exhibit 134 and 223-fold respectively stronger antiproliferative activity against MDA-MB-231 than cisplatin. The type of the cell death caused by 1 or 2 was also determined using flow cytometry assay. The binding affinity of 1 and 2 towards the CT-DNA was suspected from the differentiation of the viscosity which occurred in the solution containing increasing amounts of 1 and 2. Changes in fluorescent emission light of Ethidium bromide (EB) in the presence of DNA confirmed the intercalation mode of interactions into DNA of both complexes 1 and 2 which have been ascertained from viscosity measurements. The corresponding apparent binding constants (Kapp) of 1 and 2 towards CT-DNA calculated through fluorescence spectra are 4.9 × 104 (1) and 7.3 × 104 (2) M-1 respectively. Finally, the type of DNA binding interactions with 1 and 2 was confirmed by docking studies.


Asunto(s)
ADN/química , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Compuestos Orgánicos de Estaño/química , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Humanos , Células MCF-7 , Compuestos Orgánicos de Estaño/metabolismo , Compuestos Orgánicos de Estaño/farmacología
14.
J Inorg Biochem ; 181: 41-55, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29407907

RESUMEN

The known metallotherapeutic [Ag(salH)]2 (AGSAL-1) of salicylic acid (salH2), was used for the development of new efficient silver based material for wounds healing. AGSAL-1 was characterized by spectroscopic techniques and X-ray crystallography. The wound healing epithelialization of AGSAL-1 was investigated by the means of scratch assay against immortalized human keratinocytes (HaCaT) cells. The anti-inflammatory activity of AGSAL-1 was evaluated by monitoring the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX). The antibacterial activity of AGSAL-1 was evaluated against bacterial species which colonize wounds, such as: Pseudomonas aeruginosa (PAO1), Staphylococcus epidermidis and Staphylococcus aureus, by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and their Inhibition Zone (IZ). Moreover, the influence of AGSAL-1 against the formation of biofilm of PAO1 and St. aureus was also evaluated by the mean of Biofilm Elimination Concentration (ΒΕC). A hydrogel material CMC@AGSAL-1, based on the dispersion of AGSAL-1 in to carboxymethyl cellulose (CMC) was tested for its antimicrobial activity. Molecular Docking was performed, to explore the molecular interaction of AGSAL-1 with (i) the transcriptional regulator of PAO1, LasR. (ii) the mevalonate pathway for the biosynthesis of isoprenoids which is essential for gram-positive bacteria St. epidermidis and St. aureus. The toxicity of AGSAL-1 was examined against the HaCaT cells. Its genotoxicity was evaluated using Allium cepa model, in vivo. No genotoxicity was detected, indicating that AGSAL-1 is a candidate towards the development on a new efficient medication of the silver based metallodrugs.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Complejos de Coordinación/farmacología , Queratinocitos/efectos de los fármacos , Ácido Salicílico/farmacología , Plata/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/efectos adversos , Antibacterianos/química , Antibacterianos/metabolismo , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Línea Celular , Complejos de Coordinación/efectos adversos , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Cristalografía por Rayos X , Pruebas Antimicrobianas de Difusión por Disco , Humanos , Hidrogeles , Queratinocitos/citología , Queratinocitos/inmunología , Queratinocitos/metabolismo , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Pruebas de Mutagenicidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/fisiología , Ácido Salicílico/efectos adversos , Ácido Salicílico/química , Ácido Salicílico/metabolismo , Plata/efectos adversos , Plata/química , Plata/metabolismo , Crema para la Piel , Staphylococcus/efectos de los fármacos , Staphylococcus/crecimiento & desarrollo , Staphylococcus/fisiología , Transactivadores/química , Transactivadores/metabolismo
15.
Phys Chem Chem Phys ; 18(34): 23980-9, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27523593

RESUMEN

The equilibrium deposition filtration (EDF) method, an advanced catalyst synthesis route that is based on a molecular level approach, can be used for tailoring the oxometallic phase deposited on a porous oxide support. Here, the EDF method is used for synthesizing (MoOx)n/TiO2 catalysts. In situ Raman spectroscopy in the temperature range of 25-450 °C, low temperature (77 K) EPR spectroscopy and DR-UV spectroscopy are used for studying the evolution of the structural configuration of oxo-Mo(VI) species on TiO2 with increasing temperature as well as the influence of the supported (MoOx)n species on the photo-generation of electrons and holes of TiO2. This study concerns (MoOx)n/TiO2 samples in which the surface densities after calcination are 0.3, 2.6 and 3.9 Mo per nm(2), thereby covering a very wide range of submonolayer coverage. The gradual heat treatment of the catalysts results in a transformation of the initially (prior to drying) deposited species and the pertinent species evolution at the nano-level is discussed by means of a number of mechanisms including anchoring, association, cleavage and surface diffusion.

16.
J Phys Chem A ; 116(35): 8861-72, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22920501

RESUMEN

The structural and vibrational properties of molybdenum(VI) oxosulfato complexes formed in MoO(3)­K(2)S(2)O(7) and MoO(3)­K(2)S(2)O(7)­K(2)SO(4) molten mixtures under an O(2) atmosphere and static equilibrium conditions were studied by Raman spectroscopy at temperatures of 400­640 °C. The corresponding composition effects were explored in the X(MoO)(3)(0) = 0­0.5 range. MoO(3) undergoes a dissolution reaction in molten K(2)S(2)O(7), and the Raman spectra point to the formation of molybdenum(VI) oxosulfato complexes. The Mo═O stretching region of the Raman spectrum provides sound evidence for the occurrence of a dioxo Mo(═O)(2) configuration as a core. The stoichiometry of the dissolution reaction MoO(3) + nS(2)O(7)(2­) → C(2n­) was inferred by exploiting the Raman band intensities, and it was found that n = 1. Therefore, depending on the MoO(3 content, monomeric MoO(2)(SO(4))(2)(2­) and/or associated [MoO(2)(SO(4))(2)](m)(2m­) complexes are formed in the binary MoO(3)­K(2)S(2)O(7) molten system, and pertinent structural models are proposed in full consistency with the Raman data. A 6-fold coordination around Mo is inferred. Adjacent MoO(2)(2+) cores are linked by bidentate bridging sulfates. With increasing temperature at concentrated melts (i.e., high X(MoO)(3)(0)), the observed spectral changes can be explained by partial dissociation of [MoO(2)(SO(4))(2)](m)(2m­) by detachment of S(2)O(7)(2­) and formation of a Mo­O­Mo bridge. Addition of K(2)SO(4) in MoO(3)­K(2)S(2)O(7) results in a "follow-up" reaction and formation of MoO(2)(SO(4))(3)(4­) and/or associated [MoO(2)(SO(4))(3)](m)(4m­) complexes in the ternary MoO(3)­K(2)S(2)O(7)­K(2)SO(4) molten system. The 6-fold Mo coordination comprises two oxide ligands and four O atoms linking to coordinated sulfate groups in various environments of reduced symmetry. The most characteristic Raman bands for the molybdenum(VI) oxosulfato complexes pertain to the Mo(═O)(2) stretching modes: (1) at 957 (polarized) and 918 (depolarized) cm(­1) for the ν(s) and ν(as) Mo(═O)(2) modes of MoO(2)(SO(4))(2)(2­) and [MoO(2)(SO(4))(2)](m)(2m­) and (2) at 935 (polarized) and 895 (depolarized) cm(­1) for the respective modes of MoO(2)(SO(4))(3)(4­) and [MoO(2)(SO(4))(3)](m)(4m­). The results were tested and found to be in accordance with ab initio quantum chemical calculations carried out on [MoO(2)(SO(4))(3)](4­) and [{MoO(2)}(2)(SO(4))(4)(µ-SO(4))(2)](8­) ions, in assumed isolated gaseous free states, at the DFT/B3LYP (HF) level and with the 3-21G basis set. The calculations included determination of vibrational infrared and Raman spectra, by use of force constants in the Gaussian 03W program.

17.
J Phys Chem A ; 115(17): 4214-22, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21462962

RESUMEN

The dissolution reaction of WO3 in pure molten K2S2O7 and in molten K2S2O7-K2SO4 mixtures is studied under static equilibrium conditions in the XWO3(0) = 0-0.33 mol fraction range at temperatures up to 860 °C. High temperature Raman spectroscopy shows that the dissolution leads to formation of W(VI) oxosulfato complexes, and the spectral features are adequate for inferring the structural and vibrational properties of the complexes formed. The band characteristics observed in the W=O stretching region (band wavenumbers, intensities, and polarization characteristics) are consistent with a dioxo W(=O)2 configuration as a core unit within the oxosulfato complexes formed. A quantitative exploitation of the relative Raman intensities in the binary WO3-K2S2O7 system allows the determination of the stoichiometric coefficient, n, of the complex formation reaction WO3 + nS2O7(2-) --> C(2n-). It is found that n = 1; therefore, the reaction WO3 + S2O7(2-) > WO2(SO4)2(2-) with six-fold W coordination is proposed as fully consistent with the observed Raman features. The effects of the incremental dissolution and presence of K2SO4 in WO3-K2S2O7 melts point to a WO3 · K2S2O7 · K2SO4 stoichiometry and a corresponding complex formation reaction in the ternary molten WO3-K2S2O7-K2SO4 system according to WO3 + S2O7(2-) + SO4(2-) --> WO2(SO4)3(4-). The coordination sphere of W in WO2(SO4)2(2-) (binary system) is completed with two oxide ligands and two chelating sulfate groups. A dimeric [{WO2(SO4)2}2(µ-SO4)2](8-) configuration is proposed for the W oxosulfato complex in the ternary system, generated from inversion symmetry of aWO2(SO4)3(4-) moiety resulting in two bridging sulfates. The most characteristic Raman bands for the W(VI) oxosulfato complexes pertain to W(=O)2 stretching modes (i) at 972 (polarized) and 937 (depolarized) cm(-1) for the ν(s) and ν(as) W(=O)2 modes of WO2(SO4)2(2-), and (ii) at 933 (polarized) and 909 (depolarized) cm(-1) for the respective modes of [{WO2(SO4)2}2(µ-SO4)2](8-).

18.
Appl Spectrosc ; 63(9): 1050-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19796488

RESUMEN

A formalism for correlating relative Raman band intensities with the stoichiometric coefficients, the equilibrium constant, and the thermodynamics of reaction equilibria in solution is derived. The proposed method is used for studying: (1) the thermal dissociation of molten KHSO(4) in the temperature range 240-450 degrees C; (2) the dinuclear complex formation in molten TaCl(5)-AlCl(3) mixtures at temperatures between 125 and 235 degrees C. The experimental and calculational procedures for exploiting the temperature-dependent Raman band intensities in the molten phase as well as (if applicable) in the vapors thereof are described and used for determining the enthalpy of the equilibria: (1) 2HSO(4)(-)(l) <--> S(2)O(7)(2-)(l) + H(2)O(g), DeltaH(0)=64.9 +/- 2.9 kJ mol(-1); and (2) 1/2Ta(2)Cl(10)(l) + 1/2Al(2)Cl(6)(l) <--> TaAlCl(8)(l), DeltaH(0)=-12.1 +/- 1.5 kJ mol(-1).

19.
J Phys Chem B ; 112(38): 11996-2000, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18767773

RESUMEN

Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative band intensities inferring the occurrence of the temperature-dependent dissociation equilibrium 2HSO4(-)(l) <--> S2O7(2-)(l) + H2O(g). The Raman data are adequate for determining the partial pressures of H2O in the gas phase above the molten mixtures. A formalism for correlating relative Raman band intensities with the stoichiometric coefficients, the equilibrium constant, and the thermodynamics of the reaction equilibrium is derived. The method is used along with the temperature-dependent features of the Raman spectra to show that the studied equilibrium 2HSO4(-)(l) <--> S 2O7(2-)(l) + H2O(g) is the only process taking place to a significant extent in the temperature range of the investigation and for determining its enthalpy to be DeltaH degrees=64.9+/-2.9 kJ mol(-1). The importance of these findings for the understanding of the performance of the industrially important sulfuric acid catalyst under "wet" conditions is briefly addressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...