Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Struct Biol ; : 108116, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151742

RESUMEN

Oleate hydratase (OhyA) is a bacterial peripheral membrane protein that catalyzes FAD-dependent water addition to membrane bilayer-embedded unsaturated fatty acids. The opportunistic pathogen Staphylococcus aureus uses OhyA to counteract the innate immune system and support colonization. Many Gram-positive and Gram-negative bacteria in the microbiome also encode OhyA. OhyA is a dimeric flavoenzyme whose carboxy terminus is identified as the membrane binding domain; however, understanding how OhyA binds to cellular membranes is not complete until the membrane-bound structure has been elucidated. All available OhyA structures depict the solution state of the protein outside its functional environment. Here, we employ liposomes to solve the cryo-electron microscopy structure of the functional unit: the OhyA•membrane complex. The protein maintains its structure upon membrane binding and slightly alters the curvature of the liposome surface. OhyA preferentially associates with 20-30 nm liposomes with multiple copies of OhyA dimers assembling on the liposome surface resulting in the formation of higher-order oligomers. Dimer assembly is cooperative and extends along a formed ridge of the liposome. We also solved an OhyA dimer of dimers structure that recapitulates the intermolecular interactions that stabilize the dimer assembly on the membrane bilayer as well as the crystal contacts in the lattice of the OhyA crystal structure. Our work enables visualization of the molecular trajectory of membrane binding for this important interfacial enzyme.

2.
Annu Rev Biophys ; 53(1): 427-453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39013028

RESUMEN

Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas de la Membrana , Imagen Individual de Molécula , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Humanos , Animales
3.
Res Sq ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38883748

RESUMEN

Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aß since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aß assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aß40 and Aß42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdkgene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and aggregated proteome in these mouse models indicates significant accumulation of Aß and Aß-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.

4.
Nat Commun ; 15(1): 482, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228616

RESUMEN

Molecular-glue degraders are small molecules that induce a specific interaction between an E3 ligase and a target protein, resulting in the target proteolysis. The discovery of molecular glue degraders currently relies mostly on screening approaches. Here, we describe screening of a library of cereblon (CRBN) ligands against a panel of patient-derived cancer cell lines, leading to the discovery of SJ7095, a potent degrader of CK1α, IKZF1 and IKZF3 proteins. Through a structure-informed exploration of structure activity relationship (SAR) around this small molecule we develop SJ3149, a selective and potent degrader of CK1α protein in vitro and in vivo. The structure of SJ3149 co-crystalized in complex with CK1α + CRBN + DDB1 provides a rationale for the improved degradation properties of this compound. In a panel of 115 cancer cell lines SJ3149 displays a broad antiproliferative activity profile, which shows statistically significant correlation with MDM2 inhibitor Nutlin-3a. These findings suggest potential utility of selective CK1α degraders for treatment of hematological cancers and solid tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular , Neoplasias/tratamiento farmacológico , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211817

RESUMEN

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Asunto(s)
Ácido Oléico , Péptidos , Staphylococcus aureus , Microscopía por Crioelectrón , Ácidos Grasos Insaturados , Membrana Dobles de Lípidos/metabolismo , Fosfatos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
6.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36805027

RESUMEN

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Asunto(s)
Proteínas , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Portadoras , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
Cell Rep ; 41(1): 111434, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198273

RESUMEN

Type I interferons (IFNs) are essential innate immune proteins that maintain tissue homeostasis through tonic expression and can be upregulated to drive antiviral resistance and inflammation upon stimulation. However, the mechanisms that inhibit aberrant IFN upregulation in homeostasis and the impacts of tonic IFN production on health and disease remain enigmatic. Here, we report that caspase-8 negatively regulates type I IFN production by inhibiting the RIPK1-TBK1 axis during homeostasis across multiple cell types and tissues. When caspase-8 is deleted or inhibited, RIPK1 interacts with TBK1 to drive elevated IFN production, leading to heightened resistance to norovirus infection in macrophages but also early onset lymphadenopathy in mice. Combined deletion of caspase-8 and RIPK1 reduces the type I IFN signaling and lymphadenopathy, highlighting the critical role of RIPK1 in this process. Overall, our study identifies a mechanism to constrain tonic type I IFN during homeostasis which could be targeted for infectious and inflammatory diseases.


Asunto(s)
Interferón Tipo I , Linfadenopatía , Animales , Antivirales , Caspasa 8 , Homeostasis , Ratones , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
9.
J Biol Chem ; 298(10): 102425, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030822

RESUMEN

Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.


Asunto(s)
Actinas , Proteínas de Unión al Calcio , Exosomas , Sinteninas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Exosomas/metabolismo , Proteómica , Sinteninas/metabolismo , Humanos , Animales , Ratones , Multimerización de Proteína
10.
Nat Genet ; 54(5): 637-648, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513723

RESUMEN

Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is characterized by clonal expansion of natural killer (NK) cells where the underlying genetic mechanisms are incompletely understood. In the present study, we report somatic mutations in the chemokine gene CCL22 as the hallmark of a distinct subset of CLPD-NK. CCL22 mutations were enriched at highly conserved residues, mutually exclusive of STAT3 mutations and associated with gene expression programs that resembled normal CD16dim/CD56bright NK cells. Mechanistically, the mutations resulted in ligand-biased chemokine receptor signaling, with decreased internalization of the G-protein-coupled receptor (GPCR) for CCL22, CCR4, via impaired ß-arrestin recruitment. This resulted in increased cell chemotaxis in vitro, bidirectional crosstalk with the hematopoietic microenvironment and enhanced NK cell proliferation in vivo in transgenic human IL-15 mice. Somatic CCL22 mutations illustrate a unique mechanism of tumor formation in which gain-of-function chemokine mutations promote tumorigenesis by biased GPCR signaling and dysregulation of microenvironmental crosstalk.


Asunto(s)
Quimiocina CCL22 , Células Asesinas Naturales , Trastornos Linfoproliferativos , Animales , Quimiocina CCL22/genética , Células Asesinas Naturales/patología , Activación de Linfocitos , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/metabolismo , Trastornos Linfoproliferativos/patología , Ratones , Mutación
11.
Sci Rep ; 12(1): 7820, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551201

RESUMEN

Ozz, a member of the SOCS-box family of proteins, is the substrate-binding component of CRL5Ozz, a muscle-specific Cullin-RING ubiquitin ligase complex composed of Elongin B/C, Cullin 5 and Rbx1. CRL5Ozz targets for proteasomal degradation selected pools of substrates, including sarcolemma-associated ß-catenin, sarcomeric MyHCemb and Alix/PDCD6IP, which all interact with the actin cytoskeleton. Ubiquitination and degradation of these substrates are required for the remodeling of the contractile sarcomeric apparatus. However, how CRL5Ozz assembles into an active E3 complex and interacts with its substrates remain unexplored. Here, we applied a baculovirus-based expression system to produce large quantities of two subcomplexes, Ozz-EloBC and Cul5-Rbx1. We show that these subcomplexes mixed in a 1:1 ratio reconstitutes a five-components CRL5Ozz monomer and dimer, but that the reconstituted complex interacts with its substrates only as monomer. The in vitro assembled CRL5Ozz complex maintains the capacity to polyubiquitinate each of its substrates, indicating that the protein production method used in these studies is well-suited to generate large amounts of a functional CRL5Ozz. Our findings highlight a mode of assembly of the CRL5Ozz that differs in presence or absence of its cognate substrates and grant further structural studies.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Proteínas Cullin/genética , Unión Proteica , Sarcómeros/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
12.
Life Sci Alliance ; 5(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34819356

RESUMEN

In melanoma, a switch from a proliferative melanocytic to an invasive mesenchymal phenotype is based on dramatic transcriptional reprogramming which involves complex interactions between a variety of signaling pathways and their downstream transcriptional regulators. TGFß/SMAD, Hippo/YAP/TAZ, and Wnt/ß-catenin signaling pathways are major inducers of transcriptional reprogramming and converge at several levels. Here, we report that TGFß/SMAD, YAP/TAZ, and ß-catenin are all required for a proliferative-to-invasive phenotype switch. Loss and gain of function experimentation, global gene expression analysis, and computational nested effects models revealed the hierarchy between these signaling pathways and identified shared target genes. SMAD-mediated transcription at the top of the hierarchy leads to the activation of YAP/TAZ and of ß-catenin, with YAP/TAZ governing an essential subprogram of TGFß-induced phenotype switching. Wnt/ß-catenin signaling is situated further downstream and exerts a dual role: it promotes the proliferative, differentiated melanoma cell phenotype and it is essential but not sufficient for SMAD or YAP/TAZ-induced phenotype switching. The results identify epistatic interactions among the signaling pathways underlying melanoma phenotype switching and highlight the priorities in targets for melanoma therapy.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Melanoma/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Biomarcadores , Biomarcadores de Tumor , Proliferación Celular , Biología Computacional , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vía de Señalización Hippo , Humanos , Melanoma/etiología , Melanoma/patología , Modelos Biológicos , Clasificación del Tumor , Invasividad Neoplásica , Estadificación de Neoplasias , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , Vía de Señalización Wnt
13.
Nat Commun ; 12(1): 6468, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753908

RESUMEN

Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity-often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Indoles/uso terapéutico , Morfolinas/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Pirimidinas/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Benzotiazoles , Western Blotting , Línea Celular Tumoral , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Desnudos , Simulación de Dinámica Molecular , Naftiridinas , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
J Cell Sci ; 134(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34633031

RESUMEN

The vast majority of breast cancer-associated deaths are due to metastatic spread of cancer cells, a process aided by epithelial-to-mesenchymal transition (EMT). Mounting evidence has indicated that long non-coding RNAs (lncRNAs) also contribute to tumor progression. We report the identification of 114 novel lncRNAs that change their expression during TGFß-induced EMT in murine breast cancer cells (referred to as EMT-associated transcripts; ETs). Of these, the ET-20 gene localizes in antisense orientation within the tenascin C (Tnc) gene locus. TNC is an extracellular matrix protein that is critical for EMT and metastasis formation. Both ET-20 and Tnc are regulated by the EMT master transcription factor Sox4. Notably, ablation of ET-20 lncRNA effectively blocks Tnc expression and with it EMT. Mechanistically, ET-20 interacts with desmosomal proteins, thereby impairing epithelial desmosomes and promoting EMT. A short transcript variant of ET-20 is shown to be upregulated in invasive human breast cancer cell lines, where it also promotes EMT. Targeting ET-20 appears to be a therapeutically attractive lead to restrain EMT and breast cancer metastasis in addition to its potential utility as a biomarker for invasive breast cancer.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Desmosomas/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXC
15.
EMBO Mol Med ; 13(12): e14351, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34664408

RESUMEN

Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In this study, a combination of shRNA-mediated synthetic lethality screening and transcriptomic analysis revealed the transcription factors YAP/TAZ as key drivers of Sorafenib resistance in hepatocellular carcinoma (HCC) by repressing Sorafenib-induced ferroptosis. Mechanistically, in a TEAD-dependent manner, YAP/TAZ induce the expression of SLC7A11, a key transporter maintaining intracellular glutathione homeostasis, thus enabling HCC cells to overcome Sorafenib-induced ferroptosis. At the same time, YAP/TAZ sustain the protein stability, nuclear localization, and transcriptional activity of ATF4 which in turn cooperates to induce SLC7A11 expression. Our study uncovers a critical role of YAP/TAZ in the repression of ferroptosis and thus in the establishment of Sorafenib resistance in HCC, highlighting YAP/TAZ-based rewiring strategies as potential approaches to overcome HCC therapy resistance.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Ciclo Celular/metabolismo , Ferroptosis , Neoplasias Hepáticas , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Factor de Transcripción Activador 4/genética , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Sorafenib/farmacología , Factores de Transcripción/genética
16.
Oncogene ; 40(43): 6195-6209, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34545187

RESUMEN

Canonical Wnt/ß-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of ß-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with ß-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of ß-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the ß-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFß treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the "just-right" hypothesis of Wnt-driven tumor progression.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Factores de Transcripción/genética , Vía de Señalización Wnt , beta Catenina/genética
17.
Nature ; 597(7876): 415-419, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471287

RESUMEN

Inflammasomes are important sentinels of innate immune defence, sensing pathogens and inducing cell death in infected cells1. There are several inflammasome sensors that each detect and respond to a specific pathogen- or damage-associated molecular pattern (PAMP or DAMP, respectively)1. During infection, live pathogens can induce the release of multiple PAMPs and DAMPs, which can simultaneously engage multiple inflammasome sensors2-5. Here we found that AIM2 regulates the innate immune sensors pyrin and ZBP1 to drive inflammatory signalling and a form of inflammatory cell death known as PANoptosis, and provide host protection during infections with herpes simplex virus 1 and Francisella novicida. We also observed that AIM2, pyrin and ZBP1 were members of a large multi-protein complex along with ASC, caspase-1, caspase-8, RIPK3, RIPK1 and FADD, that drove inflammatory cell death (PANoptosis). Collectively, our findings define a previously unknown regulatory and molecular interaction between AIM2, pyrin and ZBP1 that drives assembly of an AIM2-mediated multi-protein complex that we term the AIM2 PANoptosome and comprising multiple inflammasome sensors and cell death regulators. These results advance the understanding of the functions of these molecules in innate immunity and inflammatory cell death, suggesting new therapeutic targets for AIM2-, ZBP1- and pyrin-mediated diseases.


Asunto(s)
Apoptosis/inmunología , Proteínas de Unión al ADN/metabolismo , Necroptosis/inmunología , Pirina/metabolismo , Piroptosis/inmunología , Proteínas de Unión al ARN/metabolismo , Animales , Caspasa 1/metabolismo , Células Cultivadas , Citocinas/metabolismo , Femenino , Francisella , Herpesvirus Humano 1 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células THP-1
18.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34408016

RESUMEN

During malignant progression, epithelial cancer cells dissolve their cell-cell adhesion and gain invasive features. By virtue of its dual function, ß-catenin contributes to cadherin-mediated cell-cell adhesion, and it determines the transcriptional output of Wnt signaling: via its N terminus, it recruits the signaling coactivators Bcl9 and Pygopus, and via the C terminus, it interacts with the general transcriptional machinery. This duality confounds the simple loss-of-function analysis of Wnt signaling in cancer progression. In many cancer types including breast cancer, the functional contribution of ß-catenin's transcriptional activities, as compared to its adhesion functions, to tumor progression has remained elusive. Employing the mouse mammary tumor virus (MMTV)-PyMT mouse model of metastatic breast cancer, we compared the complete elimination of ß-catenin with the specific ablation of its signaling outputs in mammary tumor cells. Notably, the complete lack of ß-catenin resulted in massive apoptosis of mammary tumor cells. In contrast, the loss of ß-catenin's transcriptional activity resulted in a reduction of primary tumor growth, tumor invasion, and metastasis formation in vivo. These phenotypic changes were reflected by stalled cell cycle progression and diminished epithelial-mesenchymal transition (EMT) and cell migration of breast cancer cells in vitro. Transcriptome analysis revealed subsets of genes which were specifically regulated by ß-catenin's transcriptional activities upon stimulation with Wnt3a or during TGF-ß-induced EMT. Our results uncouple the signaling from the adhesion function of ß-catenin and underline the importance of Wnt/ß-catenin-dependent transcription in malignant tumor progression of breast cancer.


Asunto(s)
Adhesión Celular/fisiología , Neoplasias Mamarias Animales/metabolismo , Transducción de Señal/fisiología , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Ciclo Celular , Movimiento Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Transgénicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transcriptoma , Factor de Crecimiento Transformador beta/farmacología , Proteína Wnt3A/genética , beta Catenina/genética
19.
Oncogenesis ; 10(7): 52, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272356

RESUMEN

Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In hepatocellular carcinoma (HCC), aberrant expression of hypoxia-inducible factor 1 α (HIF1α) and increased aerobic glycolysis metabolism are drivers of resistance to therapy with the multi-kinase inhibitor Sorafenib. However, it has remained unknown how HIF1α is activated and how its activity and the subsequent induction of aerobic glycolysis promote Sorafenib resistance in HCC. Here, we report the ubiquitin-specific peptidase USP29 as a new regulator of HIF1α and of aerobic glycolysis during the development of Sorafenib resistance in HCC. In particular, we identified USP29 as a critical deubiquitylase (DUB) of HIF1α, which directly deubiquitylates and stabilizes HIF1α and, thus, promotes its transcriptional activity. Among the transcriptional targets of HIF1α is the gene encoding hexokinase 2 (HK2), a key enzyme of the glycolytic pathway. The absence of USP29, and thus of HIF1α transcriptional activity, reduces the levels of aerobic glycolysis and restores sensitivity to Sorafenib in Sorafenib-resistant HCC cells in vitro and in xenograft transplantation mouse models in vivo. Notably, the absence of USP29 and high HK2 expression levels correlate with the response of HCC patients to Sorafenib therapy. Together, the data demonstrate that, as a DUB of HIF1α, USP29 promotes Sorafenib resistance in HCC cells, in parts by upregulating glycolysis, thereby opening new avenues for therapeutically targeting Sorafenib-resistant HCC in patients.

20.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33682422

RESUMEN

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Asunto(s)
Corazón/fisiopatología , Receptores de Progesterona/metabolismo , Femenino , Humanos , Masculino , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA