Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 20(1): 457, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492098

RESUMEN

BACKGROUND: Mathematics and Phy sics-based simulation models have the potential to help interpret and encapsulate biological phenomena in a computable and reproducible form. Similarly, comprehensive descriptions of such models help to ensure that such models are accessible, discoverable, and reusable. To this end, researchers have developed tools and standards to encode mathematical models of biological systems enabling reproducibility and reuse, tools and guidelines to facilitate semantic description of mathematical models, and repositories in which to archive, share, and discover models. Scientists can leverage these resources to investigate specific questions and hypotheses in a more efficient manner. RESULTS: We have comprehensively annotated a cohort of models with biological semantics. These annotated models are freely available in the Physiome Model Repository (PMR). To demonstrate the benefits of this approach, we have developed a web-based tool which enables users to discover models relevant to their work, with a particular focus on epithelial transport. Based on a semantic query, this tool will help users discover relevant models, suggesting similar or alternative models that the user may wish to explore or use. CONCLUSION: The semantic annotation and the web tool we have developed is a new contribution enabling scientists to discover relevant models in the PMR as candidates for reuse in their own scientific endeavours. This approach demonstrates how semantic web technologies and methodologies can contribute to biomedical and clinical research. The source code and links to the web tool are available at https://github.com/dewancse/model-discovery-tool.


Asunto(s)
Modelos Biológicos , Semántica , Humanos , Modelación Específica para el Paciente , Reproducibilidad de los Resultados , Programas Informáticos
2.
Brief Bioinform ; 20(2): 540-550, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30462164

RESUMEN

Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional/métodos , Simulación por Computador , Bases de Datos Factuales , Semántica , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...