Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Reprod ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741233

RESUMEN

STUDY QUESTION: What is the functional significance of Tex13b in male germ cell development and differentiation? SUMMARY ANSWER: Tex13b regulates male germ cell differentiation by metabolic reprogramming during spermatogenesis. WHAT IS KNOWN ALREADY: Studies in mice and humans suggest that TEX13B is a transcription factor and is exclusively expressed in germ cells. STUDY DESIGN, SIZE, DURATION: We sequenced the coding regions of TEX13B in 628 infertile men and 427 ethnically matched fertile control men. Further, to identify the molecular function of Tex13b, we created a Tex13b knockout and conditional overexpression system in GC-1spg (hereafter, GC-1) cells. PARTICIPANTS/MATERIALS, SETTING, METHODS: Our recent exome sequencing study identified novel candidate genes for male infertility. TEX13B was found to be one of the potential candidates, hence we explored the role of TEX13B in male infertility within a large infertile case-control cohort. We performed functional analyses of Tex13b in a GC-1 cell line using CRISPR-Cas9. We differentially labelled the cell proteins by stable isotope labelling of amino acids in cell culture (SILAC) and performed mass spectrometry-based whole-cell proteomics to identify the differential protein regulation in knockout cells compared to wild-type cells. We found that Tex13b knockout leads to downregulation of the OXPHOS complexes and upregulation of glycolysis genes, which was further validated by western blotting. These results were further confirmed by respirometry analysis in Tex13b knockout cells. Further, we also performed a conditional overexpression of TEX13B in GC-1 cells and studied the expression of OXPHOS complex proteins by western blotting. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a rare variant, rs775429506 (p.Gly237Glu), exclusively in two non-obstructive-azoospermia (NOA) men, that may genetically predispose these men for infertility. Further, we demonstrated that Tex13b functions in the transcription regulation of OXPHOS complexes. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: We examined the function of Tex13b in GC-1 in vitro by knocking out and conditional overexpression, for understanding the function of Tex13b in germ cells. Unfortunately, this could not be replicated in either an animal model or in patient-derived tissue due to the non-availability of an animal model or patient's testis biopsies. WIDER IMPLICATIONS OF THE FINDINGS: This study identified that Tex13b plays an important role in male germ cell development and differentiation. The findings of this study would be useful for screening infertile males with spermatogenic failure and counselling them before the implementation of assisted reproduction technique(s). STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by the Council of Scientific and Industrial Research (CSIR) under the network project (BSC0101 and MLP0113) and SERB, the Department of Science and Technology, Government of India (J C Bose Fellowship: JCB/2019/000027). The authors do not have any competing interest.

2.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961332

RESUMEN

Understanding diverse responses of individual cells to the same perturbation is central to many biological and biomedical problems. Current methods, however, do not precisely quantify the strength of perturbation responses and, more importantly, reveal new biological insights from heterogeneity in responses. Here we introduce the perturbation-response score (PS), based on constrained quadratic optimization, to quantify diverse perturbation responses at a single-cell level. Applied to single-cell transcriptomes of large-scale genetic perturbation datasets (e.g., Perturb-seq), PS outperforms existing methods for quantifying partial gene perturbation responses. In addition, PS presents two major advances. First, PS enables large-scale, single-cell-resolution dosage analysis of perturbation, without the need to titrate perturbation strength. By analyzing the dose-response patterns of over 2,000 essential genes in Perturb-seq, we identify two distinct patterns, depending on whether a moderate reduction in their expression induces strong downstream expression alterations. Second, PS identifies intrinsic and extrinsic biological determinants of perturbation responses. We demonstrate the application of PS in contexts such as T cell stimulation, latent HIV-1 expression, and pancreatic cell differentiation. Notably, PS unveiled a previously unrecognized, cell-type-specific role of coiled-coil domain containing 6 (CCDC6) in guiding liver and pancreatic lineage decisions, where CCDC6 knockouts drive the endoderm cell differentiation towards liver lineage, rather than pancreatic lineage. The PS approach provides an innovative method for dose-to-function analysis and will enable new biological discoveries from single-cell perturbation datasets.

3.
EMBO Rep ; 23(11): e54421, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36066347

RESUMEN

The self-renewal and differentiation potential of embryonic stem cells (ESCs) is maintained by the regulated expression of core pluripotency factors. Expression levels of the core pluripotency factor Nanog are tightly regulated by a negative feedback autorepression loop. However, it remains unclear how ESCs perceive NANOG levels and execute autorepression. Here, we show that a dose-dependent induction of Fgfbp1 and Fgfr2 by NANOG activates autocrine-mediated ERK signaling in Nanog-high cells to trigger autorepression. pERK recruits NONO to the Nanog locus to repress transcription by preventing POL2 loading. This Nanog autorepression process establishes a self-perpetuating reciprocal NANOG-pERK regulatory circuit. We further demonstrate that this reciprocal regulatory circuit induces pERK heterogeneity and ERK signaling dynamics in pluripotent stem cells. Collectively our data suggest that NANOG induces Fgfr2 and Fgfbp1 to activate ERK signaling in Nanog-high cells to establish a NANOG-pERK reciprocal regulatory circuit. This circuit regulates ERK signaling dynamics and Nanog autoregulation in pluripotent cells.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Homeostasis , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
4.
Stem Cell Res ; 39: 101521, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31400702

RESUMEN

Caudal-type homeobox 2 (.Cdx2) transcription factor is an essential regulator of differentiation to the intestinal epithelium, somatic mesoderm and trophectoderm function in the mouse. However, the regulation of Cdx2 in these processes is poorly understood. Separation of viable Cdx2 expressing cells during differentiation for downstream experiments is not possible due to its nuclear localization, limiting experimental possibilities and studying Cdx2 regulation. Here, we report generation of a Cdx2-mCherry knock-in reporter mouse embryonic stem cell line (TCMC), for modeling and studying in vitro differentiation of mESCs to intestinal epithelia, somatic mesoderm, and trophectoderm.


Asunto(s)
Factor de Transcripción CDX2/metabolismo , Células Madre Embrionarias/citología , Intestinos/citología , Animales , Factor de Transcripción CDX2/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Linaje de la Célula/fisiología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...