Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0304847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968206

RESUMEN

This paper presents a novel approach to enhance the accuracy of patch-level Gleason grading in prostate histopathology images, a critical task in the diagnosis and prognosis of prostate cancer. This study shows that the Gleason grading accuracy can be improved by addressing the prevalent issue of label inconsistencies in the SICAPv2 prostate dataset, which employs a majority voting scheme for patch-level labels. We propose a multi-label ensemble deep-learning classifier that effectively mitigates these inconsistencies and yields more accurate results than the state-of-the-art works. Specifically, our approach leverages the strengths of three different one-vs-all deep learning models in an ensemble to learn diverse features from the histopathology images to individually indicate the presence of one or more Gleason grades (G3, G4, and G5) in each patch. These deep learning models have been trained using transfer learning to fine-tune a variant of the ResNet18 CNN classifier chosen after an extensive ablation study. Experimental results demonstrate that our multi-label ensemble classifier significantly outperforms traditional single-label classifiers reported in the literature by at least 14% and 4% on accuracy and f1-score metrics respectively. These results underscore the potential of our proposed machine learning approach to improve the accuracy and consistency of prostate cancer grading.


Asunto(s)
Aprendizaje Profundo , Clasificación del Tumor , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Redes Neurales de la Computación , Próstata/patología , Algoritmos
2.
PLOS Digit Health ; 2(10): e0000354, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37878561

RESUMEN

Diabetes mellitus type 2 is increasingly being called a modern preventable pandemic, as even with excellent available treatments, the rate of complications of diabetes is rapidly increasing. Predicting diabetes and identifying it in its early stages could make it easier to prevent, allowing enough time to implement therapies before it gets out of control. Leveraging longitudinal electronic medical record (EMR) data with deep learning has great potential for diabetes prediction. This paper examines the predictive competency of deep learning models in contrast to state-of-the-art machine learning models to incorporate the time dimension of risk. The proposed research investigates a variety of deep learning models and features for predicting diabetes. Model performance was appraised and compared in relation to predominant features, risk factors, training data density and visit history. The framework was implemented on the longitudinal EMR records of over 19K patients extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN). Empirical findings demonstrate that deep learning models consistently outperform other state-of-the-art competitors with prediction accuracy of above 91%, without overfitting. Fasting blood sugar, hemoglobin A1c and body mass index are the key predictors of future onset of diabetes. Overweight, middle aged patients and patients with hypertension are more vulnerable to developing diabetes, consistent with what is already known. Model performance improves as training data density or the visit history of a patient increases. This study confirms the ability of the LSTM deep learning model to incorporate the time dimension of risk in its predictive capabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...