Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(20): e202303916, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315289

RESUMEN

The electrochemical oxidative dearomatizing methoxylation of phenols and naphthols was developed. It provides an alternative route for the preparation of methoxycyclohexadienones, important and versatile synthetic intermediates, that eliminates the need for stoichiometric high-energy chemical oxidants and generates hydrogen as a sole by-product. The reaction proceeds in a simple constant current mode, in an undivided cell, and it employs standardized instrumentation. A collection of methoxycyclohexadienones derived from various 2,4,6-tri-substituted phenols and 1-substituted-2-naphthols was obtained in moderate to excellent yields. These include a complex derivative of estrone, as well as methoxylated dearomatized 1,1'-bi-2-naphthols (BINOLs). The mechanism of the reaction was subject to profound investigations using density functional theory calculations. In particular, the reactivity of two key intermediates, phenoxyl radical and phenoxenium ion, was carefully examined. The obtained results shed light on the pathway leading to the desired product and rationalize experimentally observed selectivities regarding a side benzylic methoxylation and the preference for the functionalization at the para over the ortho position. They also uncover the structure-selectivity relationship, inversely correlating the steric bulk of the substrate with its propensity to undergo the side-reaction. Moreover, the loss of stereochemical information from enantiopure BINOL substrates during the reaction is rationalized by the computations.

2.
Comput Struct Biotechnol J ; 21: 3999-4008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649713

RESUMEN

The Nep1 protein is essential for the formation of eukaryotic and archaeal small ribosomal subunits, and it catalyzes the site-directed SAM-dependent methylation of pseudouridine (Ψ) during pre-rRNA processing. It possesses a non-trivial topology, namely, a 31 knot in the active site. Here, we address the issue of seemingly unfeasible deprotonation of Ψ in Nep1 active site by a distant aspartate residue (D101 in S. cerevisiae), using a combination of bioinformatics, computational, and experimental methods. We identified a conserved hydroxyl-containing amino acid (S233 in S. cerevisiae, T198 in A. fulgidus) that may act as a proton-transfer mediator. Molecular dynamics simulations, based on the crystal structure of S. cerevisiae, and on a complex generated by molecular docking in A. fulgidus, confirmed that this amino acid can shuttle protons, however, a water molecule in the active site may also serve this role. Quantum-chemical calculations based on density functional theory and the cluster approach showed that the water-mediated pathway is the most favorable for catalysis. Experimental kinetic and mutational studies reinforce the requirement for the aspartate D101, but not S233. These findings provide insight into the catalytic mechanisms underlying proton transfer over extended distances and comprehensively elucidate the mode of action of Nep1.

3.
Org Lett ; 25(4): 671-675, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36662120

RESUMEN

We developed a direct metal-free S-arylation of phosphorothioate diesters using diaryliodonium salts. The method allows for the preparation under simple conditions of a broad range of S-aryl phosphorothioates, including complex molecules (e.g., dinucleotide or TADDOL derivatives), as well as other related organophosphorus compounds arylated at a chalcogen. The reaction proceeds with a full retention of the stereogenic center at the phosphorus atom, opening convenient access to P-chiral products. The mechanism of the reaction was established using DFT calculations.

4.
ACS Catal ; 10(15): 8058-8068, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32904895

RESUMEN

Mg2+ is required for the catalytic activity of TrmD, a bacteria-specific methyltransferase that is made up of a protein topological knot-fold, to synthesize methylated m1G37-tRNA to support life. However, neither the location of Mg2+ in the structure of TrmD nor its role in the catalytic mechanism is known. Using molecular dynamics (MD) simulations, we identify a plausible Mg2+ binding pocket within the active site of the enzyme, wherein the ion is coordinated by two aspartates and a glutamate. In this position, Mg2+ additionally interacts with the carboxylate of a methyl donor cofactor S-adenosylmethionine (SAM). The computational results are validated by experimental mutation studies, which demonstrate the importance of the Mg2+-binding residues for the catalytic activity. The presence of Mg2+ in the binding pocket induces SAM to adopt a unique bent shape required for the methyl transfer activity and causes a structural reorganization of the active site. Quantum mechanical calculations show that the methyl transfer is energetically feasible only when Mg2+ is bound in the position revealed by the MD simulations, demonstrating that its function is to align the active site residues within the topological knot-fold in a geometry optimal for catalysis. The obtained insights provide the opportunity for developing a strategy of antibacterial drug discovery based on targeting of Mg2+-binding to TrmD.

5.
Chemistry ; 26(50): 11584-11592, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32608529

RESUMEN

The oxidative dearomatization of phenols with the addition of nucleophiles to the aromatic ring induced by hypervalent iodine(III) reagents and catalysts has emerged as a highly useful synthetic approach. However, experimental mechanistic studies of this important process have been extremely scarce. In this report, we describe systematic investigations of the dearomatizing hydroxylation of phenols using an array of experimental techniques. Kinetics, EPR spectroscopy, and reactions with radical probes demonstrate that the transformation proceeds by a radical-chain mechanism, with a phenoxyl radical being the key chain-carrying intermediate. Moreover, UV and NMR spectroscopy, high-resolution mass spectrometry, and cyclic voltammetry show that before reacting with the phenoxyl radical, the water molecule becomes activated by the interaction with the iodine(III) center, causing the Umpolung of this formally nucleophilic substrate. The radical-chain mechanism allows the rationalization of all existing observations regarding the iodine(III)-promoted oxidative dearomatization of phenols.

6.
Chemistry ; 25(41): 9619-9623, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31162732

RESUMEN

Transition-metal-free regioselecitive C-H arylation of 2-naphthols with diaryliodonium salts has been developed. The reaction proceeds under very simple experimental conditions and affords a range of products with various substitution patterns. The method allows for the incorporation of electron-deficient aryls, which complements well currently existing metal-free aryl-aryl cross-couplings of phenols that have been so far restricted to the introduction of electron-rich aryl moieties. The mechanism of the reaction was studied by means of DFT calculations, demonstrating that the C-C bond formation occurs via a dearomatization of 2-naphthol substrate, followed by a subsequent rearomatization by tautomerization. The computations show that the use of a low polarity solvent and an insoluble inorganic base is key to securing the high selectivity of the C-C coupling over a competing C-O arylation pathway, by preventing the incipient deprotonation of 2-naphthol.

7.
Org Lett ; 20(7): 1906-1909, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29537278

RESUMEN

An organocatalyzed metal-free, direct olefination of aldehydes with vinyliodonium salts has been achieved by an N-heterocyclic carbene-promoted C-H bond activation. The reaction proceeds under very mild conditions, delivering a range of (hetero)aryl-vinyl ketones in good yields. The retention of the double bond configuration is uniformly observed, and the application of 2-methoxyphenyl auxiliary group in iodonium salts secures a complete selectivity of the vinyl transfer.

8.
Chemistry ; 24(10): 2433-2439, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29266429

RESUMEN

The asymmetric palladium-catalyzed oxidative carbocyclization-borylation of enallenes, employing a chiral phosphoric acid as co-catalyst, constitutes an efficient and convenient entry into functionalized building blocks with cyclopentene scaffolds in high enantiopurity. Up till now there has been a lack of knowledge concerning the origin of enantioselectivity of this reaction as well as the absolute configuration of the product. Herein, we report the crystal structure of one of the compounds generated via this carbocyclization, providing the link between the configuration of the products and the configuration of the chiral phosphoric acid used in the reaction. Furthermore, the origin of the enantioselectivity is thoroughly investigated with density functional theory (DFT) calculations. By careful examination of different possible coordination modes, it is shown that the chiral phosphoric acid and the corresponding phosphate anion serve as ligands for palladium during the key stereoselectivity-determining cyclization step. In addition, we examine reactions wherein an extra chiral reagent, a p-benzoquinone containing a chiral sulfoxide, is used. The combined experimental and theoretical studies provide insight into the details of complexation of palladium with various species present in the reaction mixture, furnishing a general understanding of the factors governing the stereoselectivity of this and related catalytic reactions.

9.
J Am Chem Soc ; 139(30): 10250-10266, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28675701

RESUMEN

The reaction between propargylic alcohols and allylic carbonates, engaging vanadium and palladium catalysts, is an exemplary case of a cooperatively catalyzed process. This combined Meyer-Schuster rearrangement/Tsuji-Trost allylic substitution clearly illustrates the enormous advantages offered by the simultaneous use of two catalysts, but also the inherent challenges regarding selectivity associated with such a reaction design. These challenges originate from the fact that the desired product of the combined process is formed by a bimolecular coupling of the two substrates activated by the respective catalysts. However, these two processes may also occur in a detached way via the reactions of the catalytic intermediates with the starting propargylic alcohol present in the reaction mixture, leading to the formation of two side-products. Herein, we investigate the overall mechanism of this reaction using density functional theory (DFT) methodology. The mechanistic details of the catalytic cycles for all the individual processes are established. In particular, it is shown that the diphosphine ligand, dppm, used in the reaction promotes the formation of dinuclear palladium complexes, wherein only a single metal center is directly involved in the catalysis. Due to the complexity of the combined reaction network, kinetics simulation techniques are employed in order to analyze the overall selectivity. The simulations directly link the results of the DFT calculations with the experimental data and confirm that the computed free energy profiles indeed reproduce the observed selectivities. In addition, a sensitivity analysis is carried out to assess the importance of the individual steps on the product distribution. The observed behavior of the kinetic network is rationalized, and trends in the reaction outcome upon changing the initial conditions, such as the catalysts amounts and ratio, are discussed. The results provide a general framework for understanding the factors governing the selectivity of the cooperatively catalyzed reactions.

10.
J Am Chem Soc ; 139(11): 4225-4229, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28276679

RESUMEN

Investigation of the dependence of product enantiometric excess (ee) on catalyst ee is a widely used tool to probe the mechanism of an enantioselective reaction; in particular, the observation of a nonlinear relationship is usually interpreted as an indication of the presence of one or more species that contain at least two units of the chiral entity. In this report, we demonstrate that catalytic enantioconvergent reactions can display an intrinsic negative nonlinear effect that originates purely from the kinetic characteristics of certain enantioconvergent processes and is independent of possible aggregation of the chiral entity. Specifically, this intrinsic negative nonlinear effect can arise when there is a kinetic resolution of the racemic starting material, and its magnitude is correlated with the selectivity factor and the conversion; the dependence on conversion provides a ready means to distinguish it from a more conventional nonlinear effect. We support our analysis with experimental data for two distinct enantioconvergent processes, one catalyzed by a chiral phosphine and the other by a chiral Pd/phosphine complex.


Asunto(s)
Paladio/química , Fosfinas/química , Catálisis , Cinética , Estructura Molecular , Estereoisomerismo
11.
Acc Chem Res ; 49(5): 1006-18, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27082700

RESUMEN

Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce ß-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in solving complex problems and proposing new detailed reaction mechanisms that rationalize the experimental findings. For each of the considered reactions, a consistent mechanism is presented, the experimentally observed selectivities are reproduced, and their sources are identified. Reproducing selectivities requires high accuracy in computing relative transition state energies. As demonstrated by the results summarized in this Account, this accuracy is possible with the use of the presented methodology, benefiting of course from a large extent of cancellation of systematic errors. It is argued that as the employed models become larger, the number of rotamers and isomers that have to be considered for every stationary point increases and a careful assessment of their energies is therefore necessary in order to ensure that the lowest energy conformation is located. This issue constitutes a bottleneck of the investigation in some cases and is particularly important when analyzing selectivities, since small energy differences need to be reproduced.

12.
J Am Chem Soc ; 137(29): 9438-42, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26192217

RESUMEN

Methods have recently been developed for the phosphine-catalyzed asymmetric γ-addition of nucleophiles to readily available allenoates and alkynoates to generate useful α,ß-unsaturated carbonyl compounds that bear a stereogenic center in either the γ or the δ position (but not both) with high stereoselectivity. The utility of this approach would be enhanced considerably if the stereochemistry at both termini of the new bond could be controlled effectively. In this report, we describe the achievement of this objective, specifically, that a chiral phosphepine can catalyze the stereoconvergent γ-addition of a racemic nucleophile to a racemic electrophile; through the choice of an appropriate heterocycle as the nucleophilic partner, this new method enables the synthesis of protected α,α-disubstituted α-amino acid derivatives in good yield, diastereoselectivity, and enantioselectivity.


Asunto(s)
Aminoácidos/química , Compuestos Heterocíclicos/química , Naftalenos/química , Fosfinas/química , Catálisis , Estereoisomerismo
13.
J Am Chem Soc ; 137(13): 4587-91, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25815702

RESUMEN

Substantial progress has been described in the development of asymmetric variants of the phosphine-catalyzed intermolecular [3+2] annulation of allenes with alkenes; however, there have not been corresponding advances for the intramolecular process, which can generate a higher level of complexity (an additional ring and stereocenter(s)). In this study, we describe the application of chiral phosphepine catalysts to address this challenge, thereby providing access to useful scaffolds that are found in bioactive compounds, including diquinane and quinolin-2-one derivatives, with very good stereoselectivity. The products of the [3+2] annulation can be readily transformed into structures that are even more stereochemically rich. Mechanistic studies are consistent with ß addition of the phosphepine to the allene being the turnover-limiting step of the catalytic cycle, followed by a concerted [3+2] cycloaddition to the pendant olefin.


Asunto(s)
Alquenos/química , Fosfinas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Catálisis , Estereoisomerismo
14.
Chem Sci ; 6(3): 1735-1746, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29163873

RESUMEN

The iridium-catalyzed C(sp3)-H borylation of methylchlorosilanes is investigated by means of density functional theory, using the B3LYP and M06 functionals. The calculations establish that the resting state of the catalyst is a seven-coordinate Ir(v) species that has to be converted into an Ir(iii)tris(boryl) complex in order to effect the oxidative addition of the C-H bond. This is then followed by a C-B reductive elimination to yield the borylated product, and the catalytic cycle is finally completed by the regeneration of the active catalyst over two facile steps. The two employed functionals give somewhat different conclusions concerning the nature of the rate-determining step, and whether reductive elimination occurs directly or after a prior isomerization of the Ir(v) hydride intermediate complex. The calculations reproduce quite well the experimentally-observed trends in the reactivities of substrates with different substituents. It is demonstrated that the reactivity can be correlated to the Ir-C bond dissociation energies of the corresponding Ir(v) hydride intermediates. The effect of the chlorosilyl group is identified to originate from the α-carbanion-stabilizing effect of the silicon, which is further reinforced by the presence of an electron-withdrawing chlorine substituent. Furthermore, the source of selectivity for the borylation of primary over secondary C(sp3)-H can be explained on a steric basis, by repulsion between the alkyl group and the Ir/ligand moiety. Finally, the difference in the reactivity between C(sp3)-H and C(sp2)-H borylation is investigated and rationalized in terms of distortion/interaction analysis.

15.
Chemistry ; 19(52): 17939-50, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24272980

RESUMEN

Gold(I)-chloride-catalyzed synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α-sulfenylated aldehydes and ketones in 60-97% yield. Secondary aliphatic propargylic alcohols generated α-sulfenylated ketones in yields of 47-71%. Different gold sources and ligand effects were studied, and it was shown that gold(I) chloride gave the highest product yields. Experimental and theoretical studies demonstrated that the reaction proceeds in two separate steps. A sulfenylated allylic alcohol, generated by initial regioselective attack of the aryl thiol on the triple bond of the propargylic alcohol, was isolated, evaluated, and found to be an intermediate in the reaction. Deuterium labeling experiments showed that the protons from the propargylic alcohol and aryl thiol were transferred to the 3-position, and that the hydride from the alcohol was transferred to the 2-position of the product. Density functional theory (DFT) calculations showed that the observed regioselectivity of the aryl thiol attack towards the 2-position of propargylic alcohol was determined by a low-energy, five-membered cyclic protodeauration transition state instead of the strained, four-membered cyclic transition state found for attack at the 3-position. Experimental data and DFT calculations supported that the second step of the reaction is initiated by protonation of the double bond of the sulfenylated allylic alcohol with a proton donor coordinated to gold(I) chloride. This in turn allows for a 1,2-hydride shift, generating the final product of the reaction.

16.
J Am Chem Soc ; 135(20): 7647-59, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23659205

RESUMEN

The rhodium-catalyzed highly regioselective 1:2 coupling of aldehydes and allenes was investigated by means of density functional theory calculations. Full free energy profiles were calculated, and several possible reaction pathways were evaluated. It is shown that the energetically most plausible catalytic cycle is initiated by oxidative coupling of the two allenes, which was found to be the rate-determining step of the overall reaction. Importantly, Rh-allyl complexes that are able to adopt both η(3) and η(1) configurations were identified as key intermediates present throughout the catalytic cycle with profound implications for the selectivity of the reaction. The calculations reproduced and rationalized the experimentally observed selectivities and provided an explanation for the remarkable alteration in the product distribution when the catalyst precursor is changed from [RhCl(nbd)]2 (nbd = norbornadiene) to complexes containing noncoordinating counterions ([Rh(cod)2X]; X = OTf, BF4, PF6; cod = 1,5-cyclooctadiene). It turns out that the overall selectivity of the reaction is controlled by a combination of the inherent selectivities of several of the elementary steps and that both the mechanism and the nature of the selectivity-determining steps change when the catalyst is changed.


Asunto(s)
Aldehídos/química , Alcadienos/química , Rodio/química , Catálisis , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
17.
J Am Chem Soc ; 134(46): 19159-69, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23106444

RESUMEN

Interception of the transient allenyl enolate intermediate of the vanadium-catalyzed Meyer-Schuster rearrangement with aldehydes and imines has been studied computationally using density functional theory. Mechanistic details of the catalytic cycles for each of the reaction variants are established. In particular, it is shown that the active form of the catalyst contains two triphenylsiloxy ligands, the transesterification of vanadate occurs via σ-bond metathesis, and vanadium enolate is directly involved in the key C-C bond formation. The calculations also provide support for the dissociative course of the key 1,3-shift step. The stereochemistry of the reaction is thoroughly investigated, and the obtained energy barriers reproduce and rationalize the experimentally observed (Z)-, (E)-selectivity. The calculated free energy profiles are analyzed in terms of efficiency of the intermediate enolate interception. It is shown that the investigated reactions represent borderline cases, in which the intermediate trapping is only slightly favored over the undesired isomerization pathway.

18.
Chemistry ; 18(39): 12424-36, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-22890875

RESUMEN

The mechanism and sources of selectivity in the palladium-catalyzed propargylic substitution reaction that involves phosphorus nucleophiles, and which yields predominantly allenylphosphonates and related compounds, have been studied computationally by means of density functional theory. Full free-energy profiles are computed for both H-phosphonate and H-phosphonothioate substrates. The calculations show that the special behavior of H-phosphonates among other heteroatom nucleophiles is indeed reflected in higher energy barriers for the attack on the central carbon atom of the allenyl/propargyl ligand relative to the ligand-exchange pathway, which leads to the experimentally observed products. It is argued that, to explain the preference of allenyl- versus propargyl-phosphonate/phosphonothioate formation in reactions that involve H-phosphonates and H-phosphonothioates, analysis of the complete free-energy surfaces is necessary, because the product ratio is determined by different transition states in the respective branches of the catalytic cycle. In addition, these transition states change in going from a H-phosphonate to a H-phosphonothioate nucleophile.

19.
Artículo en Inglés | MEDLINE | ID: mdl-21888546

RESUMEN

31P NMR spectroscopy was used to investigate a stereochemical course of a nitrite-promoted conversion of phosphoramidate diesters into the corresponding phosphotriesters. It was found that this reaction occurred with almost complete epimerization at the phosphorus center and at the C1 atom in the amine moiety. On the basis of the 31P NMR data, a plausible mechanism for the reaction was proposed. The density functional theory calculation of the key step of the reaction, i.e., breaking of the P-N bond and formation of the P-O bond, suggested a one-step S(N)2(P) process with retention of configuration at the phosphorus center.


Asunto(s)
Amidas/química , Espectroscopía de Resonancia Magnética , Nitritos/química , Ácidos Fosfóricos/química , Ésteres/química , Modelos Moleculares , Conformación Molecular , Isótopos de Fósforo/química , Estereoisomerismo
20.
Org Lett ; 12(20): 4702-4, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20853904

RESUMEN

A new, efficient method is developed, based on a palladium(0)-catalyzed reaction of propargylic derivatives with various phosphorus nucleophiles, to produce allenylphosphonates and their analogues with defined stereochemistry in the allenic and the phosphonate moiety.


Asunto(s)
Alcadienos/química , Paladio/química , Fosfatos/síntesis química , Fósforo/química , Catálisis , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA