Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 30(5): 749-755, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846460

RESUMEN

Several limitations in genetic engineering interventions in saffron exist, hindering the development of genetically modified varieties and the widespread application of genetic engineering in this crop. Lack of genome sequence information, the complexity of genetic makeup, and lack of well-established genetic transformation protocols limit its in planta functional validation of genes that would eventually lead toward crop optimization. In this study, we demonstrate agro infiltration in leaves of adult plants and whole corm before sprouting are suitable for transient gene silencing in saffron using Tobacco Rattle Virus (TRV) based virus-induced gene silencing (VIGS) targeting phytoene desaturase (PDS). Silencing of PDS resulted in bleached phenotype in leaves in both methods. TRV-mediated VIGS could be attained in saffron leaves and corms, providing an opportunity for functional genomics studies in this expensive spice crop. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01459-0.

2.
J Exp Bot ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738685

RESUMEN

Geophytic plants synchronize growth and quiescence with the external environment to survive and thrive under changing seasons. Besides seasonal growth adaptation, dormancy and sprouting are critical factors determining crop yield and market supply as various geophytes also serve as major food, floriculture, and ornamental crops. Dormancy in such crops decides crop availability in the market, as most of such crops are consumed during the dormant stage. On the other hand, uniform/maximal sprouting is crucial for maximum yield. Thus, dormancy and sprouting regulation have great economic importance. Dormancy-sprouting cycles in geophytes are regulated by genetic, exogenous (environmental), and endogenous (genetic, metabolic and hormonal, etc.) factors. Comparatively, the temperature is more dominant in regulating dormancy and sprouting in geophytes, unlike aboveground tissues, where both photoperiod and temperature control are involved. Despite huge economic importance, studies concerning the regulation of dormancy and sprouting are scarce in the majority of geophytes. To date, only a few molecular factors involved in the process have been suggested. Recently, omics studies on molecular and metabolic factors involved in dormancy and growth regulations of underground vegetative tissues have provided more insight into the mechanism. Here, we discuss current knowledge of the environmental and molecular regulation and control of dormancy and sprouting in geophytes and discuss challenges/questions that need to be addressed in the future for crop improvement.

3.
Physiol Plant ; 176(2): e14285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606764

RESUMEN

AIMS: Geophytic plants have evolved to develop underground storage organs (USO) in the active growing season to withstand harsh environments as well as to coordinate growth and reproduction when conditions are favourable. Saffron is an autumn flowering geophyte and an expensive spice crop restricted to certain geographical locations in the world. Saffron, being sterile, does not produce seeds and thus propagates only through corms, the quality of which determines its yield. Corm development in saffron is unexplored and the underlying molecular mechanism is still elusive. In this study, we performed an extensive characterisation of the transcriptional dynamics in the source (leaf) and sink (corm) tissues during corm development in saffron. KEY RESULTS: Via morphological and transcriptome studies, we identified molecular factors regulating corm development process in saffron, which defined corm development into three stages: the initiation stage demonstrates enhanced vegetative growth aboveground and swelling of shoot base belowground due to active cell division & carbohydrate storage; the bulking stage comprises of increased source and sink strength, active photosynthesis, circadian gating and starch accumulation; the maturation stage represents reduced source and sink strength, lowered photosynthesis, sugar transport, starch synthesis and cell cycle arrest. UTILITY: The global view of transcriptional changes in source and sink identifies similar and new molecular factors involved in the saffron corm development process compared to USO formation in other geophytes and provides a valuable resource for dissecting the molecular network underlying the corm development. We propose a hypothetical model based on data analysis, of how molecular factors via environmental cues can regulate the corm development process in saffron.


Asunto(s)
Crocus , Crocus/genética , Crocus/metabolismo , Transcriptoma/genética , Hojas de la Planta , Almidón/metabolismo
4.
Front Plant Sci ; 14: 1107172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968363

RESUMEN

Flowering in saffron is a highly complex process regulated by the synchronized action of environmental cues and endogenous signals. Hormonal regulation of flowering is a very important process controlling flowering in several plants, but it has not been studied in saffron. Flowering in saffron is a continual process completed in months with distinct developmental phases, mainly divided into flowering induction and flower organogenesis/formation. In the present study, we investigated how phytohormones affect the flowering process at different developmental stages. The results suggest that different hormones differentially affect flower induction and formation in saffron. The exogenous treatment of flowering competent corms with abscisic acid (ABA) suppressed both floral induction and flower formation, whereas some other hormones, like auxins (indole acetic acid, IAA) and gibberellic acid (GA), behaved contrarily at different developmental stages. IAA promoted flower induction, while GA suppressed it; however, GA promoted flower formation, whereas IAA suppressed it. Cytokinin (kinetin) treatment suggested its positive involvement in flower induction and flower formation. The expression analysis of floral integrator and homeotic genes suggests that ABA might suppress floral induction by suppressing the expression of the floral promoter (LFY, FT3) and promoting the expression of the floral repressor (SVP) gene. Additionally, ABA treatment also suppressed the expression of the floral homeotic genes responsible for flower formation. GA reduces the expression of flowering induction gene LFY, while IAA treatment upregulated its expression. In addition to these genes, a flowering repressor gene, TFL1-2, was also found to be downregulated in IAA treatment. Cytokinin promotes flowering induction by increasing the expression levels of the LFY gene and decreasing the TFL1-2 gene expression. Moreover, it improved flower organogenesis by increasing the expression of floral homeotic genes. Overall, the results suggest that hormones differently regulate flowering in saffron via regulating floral integrator and homeotic gene expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...