Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(51): 57481-57491, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36512441

RESUMEN

Biopolymeric hydrogel materials containing tunable optical properties such as micropatterned artificial opal structures hold significant potential in various applications. Despite recent advances in fabrication techniques, simple, reliable, and tunable production of stimuli-responsive micropatterned opal hydrogels under mild conditions remains challenging. We report a simple micromolding-based evaporative deposition-thermal gelation technique for gelatin films that capture uniform opal micropatterns, aided by a potent aminopolysaccharide chitosan (CS) that provides binding affinity and structural stability. Our results show reliable, tunable, and high-fidelity fabrication of gelatin hydrogel films containing CS-opal micropatterns, while the as-prepared films show responsiveness to pH, ionic strength, and water content indicating a robust nature. Uniform CS-opal microparticles can also be readily prepared via removal of the gelatin through various simple routes, illustrating the crucial roles of CS and gelatin. We envision that this robust, reliable, and simple evaporative deposition-thermal gelation technique can be readily extended to prepare responsive biopolymeric materials for various applications.


Asunto(s)
Quitosano , Gelatina , Gelatina/química , Quitosano/química , Hidrogeles/química
2.
Langmuir ; 37(4): 1456-1464, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464905

RESUMEN

Opal-structured thin-film hydrogel materials with micropatterns hold great potential for utility in a wide range of sensing applications. Micropatterning offers key advantages such as ready addressability, high throughput assay, and multiplexing. However, controlled fabrication of such films in a rapid, inexpensive, and reliable manner remains a challenge. Existing techniques suffer from long opal deposition times and often involve complex and arduous steps. In this report, we examined a simple micromolding-based evaporation-polymerization method for the fabrication of poly(ethylene glycol)-based hydrogel films containing micropatterned opal structures. Specifically, intense and uniform opalescent colors were achieved by evaporative deposition of polystyrene bead solution in patterned micromolds. These opal micropatterns were then captured in hydrogel films by simple photopolymerization of a UV-curable PEG diacrylate solution. The as-prepared films show high tunability as well as responsiveness to various environmental cues readily manifested via shifts in color. Combined with UV-vis reflectance spectroscopy and scanning electron microscopy results, these findings illustrate the robust, simple, and reliable nature of our integrated deposition-polymerization approach for controlled fabrication of optically active and stimuli-responsive functional materials. We thus envision that the results and the facile approach reported here can be extended to many application areas including environmental monitoring, diagnostics, and biosensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...