Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958754

RESUMEN

The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.


Asunto(s)
Potyvirus , ARN Pequeño no Traducido , Solanum tuberosum , ARN Bicatenario/genética , Solanum tuberosum/genética , Interferencia de ARN , Potyvirus/genética
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834280

RESUMEN

Potato virus Y, an important viral pathogen of potato, has several genetic variants and geographic distributions which could be affected by environmental factors, aphid vectors, and reservoir plants. PVY is transmitted to virus-free potato plants by aphids and passed on to the next vegetative generations through tubers, but the effects of tuber transmission in PVY is largely unknown. By using high-throughput sequencing, we investigated PVY populations transmitted to potato plants by aphids in different climate zones of Russia, namely the Moscow and Astrakhan regions. We analyzed sprouts from the tubers produced by field-infected plants to investigate the impact of tuber transmission on PVY genetics. We found a significantly higher diversity of PVY isolates in the Astrakhan region, where winters are shorter and milder and summers are warmer compared to the Moscow region. While five PVY types, NTNa, NTNb, N:O, N-Wi, and SYR-I, were present in both regions, SYRI-II, SYRI-III, and 261-4 were only found in the Astrakhan region. All these recombinants were composed of the genome sections derived from PVY types O and N, but no full-length sequences of such types were present. The composition of the PVY variants in the tuber sprouts was not always the same as in their parental plants, suggesting that tuber transmission impacts PVY genetics.


Asunto(s)
Áfidos , Potyvirus , Solanum tuberosum , Animales , Potyvirus/genética , Enfermedades de las Plantas , Solanum tuberosum/genética , Federación de Rusia , Genoma Viral , Áfidos/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887257

RESUMEN

In this work we developed and exploited a spray-induced gene silencing (SIGS)-based approach to deliver double-stranded RNA (dsRNA), which was found to protect potato against potato virus Y (PVY) infection. Given that dsRNA can act as a defence-inducing signal that can trigger sequence-specific RNA interference (RNAi) and non-specific pattern-triggered immunity (PTI), we suspected that these two pathways may be invoked via exogeneous application of dsRNA, which may account for the alterations in PVY susceptibility in dsRNA-treated potato plants. Therefore, we tested the impact of exogenously applied PVY-derived dsRNA on both these layers of defence (RNAi and PTI) and explored its effect on accumulation of a homologous virus (PVY) and an unrelated virus (potato virus X, PVX). Here, we show that application of PVY dsRNA in potato plants induced accumulation of both small interfering RNAs (siRNAs), a hallmark of RNAi, and some PTI-related gene transcripts such as WRKY29 (WRKY transcription factor 29; molecular marker of PTI), RbohD (respiratory burst oxidase homolog D), EDS5 (enhanced disease susceptibility 5), SERK3 (somatic embryogenesis receptor kinase 3) encoding brassinosteroid-insensitive 1-associated receptor kinase 1 (BAK1), and PR-1b (pathogenesis-related gene 1b). With respect to virus infections, PVY dsRNA suppressed only PVY replication but did not exhibit any effect on PVX infection in spite of the induction of PTI-like effects in the presence of PVX. Given that RNAi-mediated antiviral immunity acts as the major virus resistance mechanism in plants, it can be suggested that dsRNA-based PTI alone may not be strong enough to suppress virus infection. In addition to RNAi- and PTI-inducing activities, we also showed that PVY-specific dsRNA is able to upregulate production of a key enzyme involved in poly(ADP-ribose) metabolism, namely poly(ADP-ribose) glycohydrolase (PARG), which is regarded as a positive regulator of biotic stress responses. These findings offer insights for future development of innovative approaches which could integrate dsRNA-induced RNAi, PTI and modulation of poly(ADP-ribose) metabolism in a co-ordinated manner, to ensure a high level of crop protection.


Asunto(s)
Potyvirus , Solanum tuberosum , Enfermedades de las Plantas/genética , Poli Adenosina Difosfato Ribosa , Potyvirus/fisiología , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Solanum tuberosum/metabolismo
4.
Plants (Basel) ; 11(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35270104

RESUMEN

Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in controlling the temperature regulation of plant-virus interactions are poorly characterised. To elucidate these further, we analysed the responses of potato plants cv Chicago to infection by potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), the latter of which is known to significantly increase plant susceptibility to PVY. Using RNAseq analysis, we showed that single and combined PVY and heat-stress treatments caused dramatic changes in gene expression, affecting the transcription of both protein-coding and non-coding RNAs. Among the newly identified genes responsive to PVY infection, we found genes encoding enzymes involved in the catalysis of polyamine formation and poly ADP-ribosylation. We also identified a range of novel non-coding RNAs which were differentially produced in response to single or combined PVY and heat stress, that consisted of antisense RNAs and RNAs with miRNA binding sites. Finally, to gain more insights into the potential role of alternative splicing and epitranscriptomic RNA methylation during combined stress conditions, direct RNA nanopore sequencing was performed. Our findings offer insights for future studies of functional links between virus infections and transcriptome reprogramming, RNA methylation and alternative splicing.

5.
Biochemistry (Mosc) ; 86(9): 1060-1094, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34565312

RESUMEN

Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.


Asunto(s)
Células Eucariotas/virología , Iniciación de la Cadena Peptídica Traduccional/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Animales , Células Eucariotas/fisiología , Humanos , Sitios Internos de Entrada al Ribosoma/fisiología , ARN Circular/genética , Proteínas Virales/fisiología
6.
Viruses ; 13(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064103

RESUMEN

Plant-virus interactions are frequently influenced by elevated temperature, which often increases susceptibility to a virus, a scenario described for potato cultivar Chicago infected with potato virus Y (PVY). In contrast, other potato cultivars such as Gala may have similar resistances to PVY at both normal (22 °C) and high (28 °C) temperatures. To elucidate the mechanisms of temperature-independent antivirus resistance in potato, we analysed responses of Gala plants to PVY at different temperatures using proteomic, transcriptional and metabolic approaches. Here we show that in Gala, PVY infection generally upregulates the accumulation of major enzymes associated with the methionine cycle (MTC) independently of temperature, but that temperature (22 °C or 28 °C) may finely regulate what classes accumulate. The different sets of MTC-related enzymes that are up-regulated at 22 °C or 28 °C likely account for the significantly increased accumulation of S-adenosyl methionine (SAM), a key component of MTC which acts as a universal methyl donor in methylation reactions. In contrast to this, we found that in cultivar Chicago, SAM levels were significantly reduced which correlated with the enhanced susceptibility to PVY at high temperature. Collectively, these data suggest that MTC and its major transmethylation function determines resistance or susceptibility to PVY.


Asunto(s)
Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Metionina/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/virología , Cromatografía Liquida , Biología Computacional/métodos , Calor , Redes y Vías Metabólicas , Metilación , Proteínas de Plantas , Espectrometría de Masas en Tándem
7.
Plants (Basel) ; 10(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401751

RESUMEN

In recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses. Additionally, we describe how RNA guided CRISPR-CAS gene-editing systems have been deployed to inhibit plant virus infections, and we provide a comparative analysis of RNAi approaches and CRISPR-Cas technology. The two main strategies for engineering virus resistance are also discussed, including direct targeting of viral DNA or RNA, or inactivation of plant host susceptibility genes. We also elaborate on the challenges that need to be overcome before such technologies can be broadly exploited for crop protection against viruses.

8.
Mol Plant Pathol ; 22(1): 77-91, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146443

RESUMEN

Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant-virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.


Asunto(s)
Metionina/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/metabolismo , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Proteómica , Solanum tuberosum/virología , Temperatura
9.
Phytopathology ; 110(1): 18-28, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31433273

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genes (Cas) is a prokaryotic adaptive immune system which has been reprogrammed into a precise, simple, and efficient gene targeting technology. This emerging technology is revolutionizing various areas of life sciences, medicine, and biotechnology and has raised significant interest among plant biologists, both in basic science and in plant protection and breeding. In this review, we describe the basic principles of CRISPR/Cas systems, and how they can be deployed to model plants and crops for the control, monitoring, and study of the mechanistic aspects of plant virus infections. We discuss how Cas endonucleases can be used to engineer plant virus resistance by directly targeting viral DNA or RNA, as well as how they can inactivate host susceptibility genes. Additionally, other applications of CRISPR/Cas in plant virology such as virus diagnostics and imaging are reviewed. The review also provides a systemic comparison between CRISPR/Cas technology and RNA interference approaches, the latter of which has also been used for development of virus-resistant plants. Finally, we outline challenges to be solved before CRISPR/Cas can produce virus-resistant crop plants which can be marketed.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Patología de Plantas , Virus de Plantas , Sistemas CRISPR-Cas , Enfermedades de las Plantas/virología
10.
New Phytol ; 224(1): 439-453, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31215645

RESUMEN

In addition to well-known roles in RNA metabolism, the nucleolus and Cajal bodies (CBs), both located within the nucleus, are involved in plant responses to biotic and abiotic stress. Previously we showed that plants in which expression of the CB protein coilin is downregulated are more susceptible to certain viruses including tobacco rattle virus (TRV), suggesting a role of coilin in antiviral defence. Experiments with coilin-deficient plants and the deletion mutant of the TRV 16K protein showed that both 16K and coilin are required for restriction of systemic TRV infection. The potential mechanisms of coilin-mediated antiviral defence were elucidated via experiments involving co-immunoprecipitation, use of NahG transgenic plants deficient in salicylic acid (SA) accumulation, measurement of endogenous SA concentrations and assessment of SA-responsive gene expression. Here we show that TRV 16K interacts with and relocalizes coilin to the nucleolus. In wild-type plants these events are accompanied by activation of SA-responsive gene expression and restriction of TRV systemic infection. By contrast, viral systemic spread was enhanced in NahG plants, implicating SA in these processes. Our findings suggest that coilin is involved in plant defence, responding to TRV infection by recognition of the TRV-encoded 16K protein and activating SA-dependent defence pathways.


Asunto(s)
Cuerpos Enrollados/metabolismo , Nicotiana/inmunología , Nicotiana/virología , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Virus de Plantas/fisiología , Ácido Salicílico/metabolismo , Proteínas Virales/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Unión Proteica , Nicotiana/genética
11.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013736

RESUMEN

We produced and isolated tobacco mosaic virus-like particles (TMV VLPs) from bacteria, which are devoid of infectious genomes, and found that they have a net negative charge and can bind calcium ions. Moreover, we showed that the TMV VLPs could associate strongly with nanocellulose slurry after a simple mixing step. We sequentially exposed nanocellulose alone or slurries mixed with the TMV VLPs to calcium and phosphate salts and utilized physicochemical approaches to demonstrate that bone mineral (hydroxyapatite) was deposited only in nanocellulose mixed with the TMV VLPs. The TMV VLPs confer mineralization properties to the nanocellulose for the generation of new composite materials.


Asunto(s)
Calcificación Fisiológica , Calcio , Celulosa , Durapatita , Nanocompuestos , Fosfatos , Biotecnología , Calcio/química , Celulosa/química , Durapatita/química , Nanocompuestos/química , Nanocompuestos/ultraestructura , Fosfatos/química , Virus del Mosaico del Tabaco
12.
Front Microbiol ; 9: 2582, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425697

RESUMEN

Potato (Solanum tuberosum) plants are exposed to diverse environmental stresses, which may modulate plant-pathogen interactions, and potentially cause further decreases in crop productivity. To provide new insights into interactive molecular responses to heat stress combined with virus infection in potato, we analyzed expression of genes encoding pathogenesis-related (PR) proteins [markers of salicylic acid (SA)-mediated plant defense] and heat shock proteins (HSPs), in two potato cultivars that differ in tolerance to elevated temperatures and in susceptibility to potato virus Y (PVY). In plants of cv. Chicago (thermosensitive and PVY-susceptible), increased temperature reduced PR gene expression and this correlated with enhancement of PVY infection (virus accumulation and symptom production). In contrast, with cv. Gala (thermotolerant and PVY resistant), which displayed a greater increase in PR gene expression in response to PVY infection, temperature affected neither PR transcript levels nor virus accumulation. HSP genes were induced by elevated temperature in both cultivars but to higher levels in the thermotolerant (Gala) cultivar. PVY infection did not alter expression of HSP genes in the Gala cultivar (possibly because of the low level of virus accumulation) but did induce expression of HSP70 and HSP90 in the susceptible cultivar (Chicago). These findings suggest that responses to heat stress and PVY infection in potato have some common underlying mechanisms, which may be integrated in a specific consolidated network that controls plant sensitivity to multiple stresses in a cultivar-specific manner. We also found that the SA pre-treatment subverted the sensitive combined (heat and PVY) stress phenotype in Chicago, implicating SA as a key component of such a regulatory network.

13.
Front Plant Sci ; 9: 132, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29479362

RESUMEN

The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA) synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribose)polymerase (PARP), which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses.

14.
Data Brief ; 16: 1034-1037, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29322084

RESUMEN

Nanoparticles (NPs) have a number of unique properties associated with their ultrasmall size and exhibit many advantages compared with existing plant biotechnology platforms for delivery of proteins, RNA and DNA of various sizes into the plant cells (Arruda et al., 2015; Silva et al., 2010; Martin-Ortigosa et al., 2014; Mitter et al., 2017) [1], [2], [3], [4]. The data presented in this article demonstrate a delivery of biomolecules into Nicotiana benthamiana plant leaves using various types of NPs including gold, iron oxide and chitosan NPs and methods of biolistic bombardment and infiltration. The data demonstrate physical characteristics of NPs coated with fluorescently labeled protein and small RNA (size and zeta-potential) and visualization of nanocomplexes delivery into cells of N. benthamiana leaves by fluorescence microscopy.

15.
RNA Biol ; 14(6): 779-790, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27726481

RESUMEN

Cajal bodies (CBs) are distinct sub-nuclear structures that are present in eukaryotic living cells and are often associated with the nucleolus. CBs play important roles in RNA metabolism and formation of RNPs involved in transcription, splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles, CBs appear to be involved in additional functions that may not be directly related to RNA metabolism and RNP biogenesis. In this review, we assess possible roles of plant CBs in RNA regulatory pathways such as nonsense-mediated mRNA decay and RNA silencing. We also summarize recent progress and discuss new non-canonical functions of plant CBs in responses to stress and disease. It is hypothesized that CBs can regulate these responses via their interaction with poly(ADP ribose)polymerase (PARP), which is known to play an important role in various physiological processes including responses to biotic and abiotic stresses. It is suggested that CBs and their components modify PARP activities and functions.


Asunto(s)
Cuerpos Enrollados/metabolismo , Enfermedades de las Plantas/genética , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico , Cuerpos Enrollados/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/virología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Estrés Fisiológico/genética
16.
Data Brief ; 8: 258-61, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27331098

RESUMEN

This data article is related to the research article entitled "in vitro properties of hordeivirus TGB1 protein forming ribonucleoprotein complexes" (Makarov et al., 2015 [1]), demonstrating that upon incubation with viral RNA the poa semilatent hordeivirus (PSLV) TGB1 protein (the movement 63 K protein encoded by the first gene of the triple gene block) in vitro forms RNP structures resembling filamentous virus-like particles and its internal domain (ID) performs a major structural role in this process. This article reports the additional results on the structural lability of ID and the structural transitions in the C-terminal NTPase/helicase domain (HELD) induced by interaction with tRNA and phosphorylation.

17.
Front Plant Sci ; 6: 984, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617624

RESUMEN

We genetically modified tobacco mosaic virus (TMV) to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV), and demonstrate that unlike wild type TMV, this construct can lead to the formation of discrete 10-40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials.

18.
J Gen Virol ; 96(11): 3422-3431, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26276346

RESUMEN

Hordeivirus movement protein encoded by the first gene of the triple gene block (TGB1 protein, TGBp1) interacts in vivo with viral genomic and subgenomic RNAs to form ribonucleoprotein (RNP) particles that are considered to be a form of viral genome (non-virion transport form) capable of cell-to-cell and long-distance transport in infected plants. The structures of these RNPs have not been elucidated. The poa semilatent virus (PSLV) TGBp1 contains a structured C-terminal NTPase/helicase domain and an N-terminal extension region consisting of two domains - a completely intrinsically disordered extreme N-terminal domain and an internal domain (ID) with structure resembling a partially disordered molten globule. Here, we characterized the structures assembled in vitro by the full-length PSLV TGBp1 alone or in the presence of viral RNA. The PSLV TGBp1 was capable of multimerization and self-assembly into extended high-molecular-mass complexes. These complexes disassembled to apparent monomers upon incubation with ATP. Upon incubation with viral RNA, the PSLV TGBp1 in vitro formed RNP structures that appeared as filamentous particles resembling virions of helical filamentous plant viruses in morphology and dimensions. By comparing the biophysical characteristics of PSLV TGBp1 and its domains in the presence and absence of RNA, we show that the ID plays the main structural role in the self-interactions and RNA interactions of TGBp1 leading to the assembly of virus-like RNP particles.


Asunto(s)
Virus ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Genoma Viral , Virus ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Ribonucleoproteínas/genética , Proteínas Virales/genética
19.
Langmuir ; 30(20): 5982-8, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24784347

RESUMEN

We report the synthesis and characterization of amorphous iron oxide nanoparticles from iron salts in aqueous extracts of monocotyledonous (Hordeum vulgare) and dicotyledonous (Rumex acetosa) plants. The nanoparticles were characterized by TEM, absorbance spectroscopy, SAED, EELS, XPS, and DLS methods and were shown to contain mainly iron oxide and iron oxohydroxide. H. vulgare extracts produced amorphous iron oxide nanoparticles with diameters of up to 30 nm. These iron nanoparticles are intrinsically unstable and prone to aggregation; however, we rendered them stable in the long term by addition of 40 mM citrate buffer pH 3.0. In contrast, amorphous iron oxide nanoparticles (diameters of 10-40 nm) produced using R. acetosa extracts are highly stable. The total protein content and antioxidant capacity are similar for both extracts, but pH values differ (H. vulgare pH 5.8 vs R. acetosa pH 3.7). We suggest that the presence of organic acids (such oxalic or citric acids) plays an important role in the stabilization of iron nanoparticles, and that plants containing such constituents may be more efficacious for the green synthesis of iron nanoparticles.


Asunto(s)
Compuestos Férricos/química , Hordeum/química , Nanopartículas/química , Extractos Vegetales/química , Hojas de la Planta/química , Rumex/química
20.
Nucleus ; 5(1): 85-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637832

RESUMEN

Cajal bodies (CBs) are distinct nuclear bodies physically and functionally associated with the nucleolus. In addition to their traditional function in coordinating maturation of certain nuclear RNAs, CBs participate in cell cycle regulation, development, and regulation of stress responses. A key "signature" component of CBs is coilin, the scaffolding protein essential for CB formation and function. Using an RNA silencing (loss-of-function) approach, we describe here new phenomena whereby coilin also affects, directly or indirectly, a variety of interactions between host plants and viruses that have RNA or DNA genomes. Moreover, the effects of coilin on these interactions are manifested differently: coilin contributes to plant defense against tobacco rattle virus (tobravirus), tomato black ring virus (nepovirus), barley stripe mosaic virus (hordeivirus), and tomato golden mosaic virus (begomovirus). In contrast, with potato virus Y (potyvirus) and turnip vein clearing virus (tobamovirus), coilin serves to increase virus pathogenicity. These findings show that interactions with coilin (or CBs) may involve diverse mechanisms with different viruses and that these mechanisms act at different phases of virus infection. Thus, coilin (CBs) has novel, unexpected natural functions that may be recruited or subverted by plant viruses for their own needs or, in contrast, are involved in plant defense mechanisms that suppress host susceptibility to the viruses.


Asunto(s)
Cuerpos Enrollados/metabolismo , Nicotiana/genética , Nicotiana/virología , Proteínas de Plantas/metabolismo , Virus/patogenicidad , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Clonación Molecular , Cuerpos Enrollados/genética , ADN de Plantas/genética , Silenciador del Gen , Interacciones Huésped-Patógeno/genética , Microscopía Confocal , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , ARN Viral/genética , Nicotiana/clasificación , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...