Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Orphanet J Rare Dis ; 19(1): 196, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741077

RESUMEN

BACKGROUND: KAT6A (Arboleda-Tham) syndrome is a Mendelian disorder of the epigenetic machinery caused by pathogenic variants in the lysine acetyltransferase 6 A (KAT6A) gene. Intellectual disability and speech/language impairment (e.g., minimally verbal) are common features of the disorder, with late-truncating variants associated with a more severe form of intellectual disability. However, much of the cognitive phenotype remains elusive given the dearth of research. PARTICIPANTS AND METHODS: This study examined non-verbal and social skills of 15 individuals with molecularly-confirmed diagnoses of KAT6A syndrome (Mean age = 10.32 years, SD = 4.12). Participants completed select subtests from the DAS-II, the NEPSY-II, and the Beery Buktenica Developmental Test of Visual Motor Integration 6th Edition, and their caregivers completed an assortment of behavior rating inventories. RESULTS: Findings suggest global cognitive impairment with nonverbal cognition scores similar to those for receptive language. Autism-related features, particularly restricted interests and repetitive behaviors, and broad adaptive deficits were common in our sample juxtaposed with a relatively strong social drive and low frequency of internalizing and externalizing behavioral problems. A general trend of lower performance scores on nonverbal and receptive language measures was observed among those with protein-truncating variants vs. missense variants; however, no effect was observed on caregiver rating inventories of daily behaviors. Late and early truncating variants yielded comparable neuropsychological profiles. CONCLUSIONS: Overall, study results show the cognitive phenotype of KAT6A syndrome includes equally impaired nonverbal cognition and receptive language functioning, paired with relatively intact social drive and strengths in behavior regulation. Emergent genotype-phenotype correlations suggest cognition may be more affected in protein-truncating than missense mutations although similar neurobehavioral profiles were observed.


Asunto(s)
Histona Acetiltransferasas , Discapacidad Intelectual , Humanos , Masculino , Femenino , Niño , Discapacidad Intelectual/genética , Histona Acetiltransferasas/genética , Adolescente , Fenotipo , Preescolar , Genotipo , Estudios de Asociación Genética , Adulto Joven
2.
Am J Med Genet A ; 191(10): 2591-2601, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37470210

RESUMEN

The aim of this study was to provide a descriptive overview of the social characteristics associated with Wiedemann-Steiner syndrome (WSS). A total of 24 parents of children/adults with WSS (11F, mean age = 12.94 years, SD = 8.00) completed the Social Responsiveness Scale 2nd Edition (SRS-2); Colorado Learning Difficulties Questionnaire (CLDQ) and Strengths and Difficulties Questionnaire (SDQ). Almost half our sample reported a diagnosis of autism spectrum disorder (ASD) and 70% had intellectual disability. On the SDQ, over 90% of participants were rated in borderline/clinical ranges in Peer Problems, yet the majority fell within normal limits in Prosocial Behaviors. Most fell in the moderate/severe difficulties ranges across SRS-2 Social Cognition, Communication, and Restricted/Repetitive Behaviors scales (all >70%); whereas substantially less participants met these ranges for deficits in Social Awareness (50%) and Social Motivation (33.33%). A pattern of relatively strong prosocial skills and social drive in the context of difficulties with inflexible behaviors, social cognition, and communication was observed, regardless of gender, ASD or intellectual disability diagnosis. The social phenotype associated with WSS is characterized by some autistic features paired with unusually high social motivation and prosocial tendencies.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Niño , Adulto , Humanos , Adolescente , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/complicaciones , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/complicaciones , Fenotipo
3.
J Neurodev Disord ; 15(1): 16, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37245029

RESUMEN

Epigenetics, one mechanism by which gene expression can change without any changes to the DNA sequence, was described nearly a century ago. However, the importance of epigenetic processes to neurodevelopment and higher order neurological functions like cognition and behavior is only now being realized. A group of disorders known as the Mendelian disorders of the epigenetic machinery are caused by the altered function of epigenetic machinery proteins, which consequently affects downstream expression of many genes. These disorders almost universally have cognitive dysfunction and behavioral issues as core features. Here, we review what is known about the neurodevelopmental phenotypes of some key examples of these disorders divided into categories based on the underlying function of the affected protein. Understanding these Mendelian disorders of the epigenetic machinery can illuminate the role of epigenetic regulation in typical brain function and can lead to future therapies and better management for a host of neurodevelopmental and neuropsychological disorders.


Asunto(s)
Cognición , Epigénesis Genética
4.
Genes (Basel) ; 15(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38254937

RESUMEN

Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To clarify some aspects of hearing loss, we collected information on hearing status from 21 individuals with KS1 and found that individuals have both sensorineural and conductive hearing loss, with the average age of presentation being 7 years. Our data suggest that while ear infections and structural abnormalities contribute to the observed hearing loss, these factors do not explain all loss. Using a KS1 mouse model, we found hearing abnormalities from hearing onset, as indicated by auditory brainstem response measurements. In contrast to mouse and human data for CHARGE syndrome, a disorder possessing overlapping clinical features with KS and a well-known cause of hearing loss and structural inner ear abnormalities, there are no apparent structural abnormalities of the cochlea in KS1 mice. The KS1 mice also display diminished distortion product otoacoustic emission levels, which suggests outer hair cell dysfunction. Combining these findings, our data suggests that KMT2D dysfunction causes sensorineural hearing loss compounded with external factors, such as infection.


Asunto(s)
Anomalías Múltiples , Síndrome CHARGE , Sordera , Cara , Pérdida Auditiva Sensorineural , Enfermedades Hematológicas , Enfermedades Vestibulares , Animales , Niño , Humanos , Ratones , Causalidad , Cara/anomalías , Audición , Pérdida Auditiva Sensorineural/genética
5.
Front Genet ; 13: 1007046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276984

RESUMEN

Kabuki syndrome (KS) is a Mendelian Disorder of the Epigenetic Machinery (MDEM) caused by loss of function variants in either of two genes involved in the regulation of histone methylation, KMT2D (34-76%) or KDM6A (9-13%). Previously, representative neurobehavioral deficits of KS were recapitulated in a mouse model, emphasizing the role of KMT2D in brain development, specifically in ongoing hippocampal neurogenesis in the granule cell layer of the dentate gyrus. Interestingly, anxiety, a phenotype that has a known association with decreased hippocampal neurogenesis, has been anecdotally reported in individuals with KS. In this study, anxiety and behavior were assessed in a cohort of 60 individuals with molecularly confirmed KS and 25 unaffected biological siblings, via questionnaires (SCARED/GAS-ID and CBCL/ABCL). Participant age ranged from 4 to 43 years old, with 88.3% of participants having a pathogenic variant in KMT2D, and the rest having variants in KDM6A. In addition, data was collected on adaptive function and positive affect/quality of life in participants with KS using appropriate online surveys including ABAS-III and PROMIS Positive Affect. Survey scores were compared within the KS participants across age groups and between KS participants and their unaffected siblings. We found that children with KS have significantly higher anxiety scores and total behavior problem scores than their unaffected siblings (p = 0.0225, p < 0.0001). Moreover, a large proportion of affected individuals (22.2% of children and 60.0% of adults) surpassed the established threshold for anxiety; this may even be an underestimate given many patients are already treated for anxiety. In this sample, anxiety levels did not correlate with level of cognitive or adaptive function in any KS participants, but negatively correlated with positive affect in children with KS (p = 0.0005). These findings indicate that anxiety is a common neurobehavioral feature of KS. Providers should therefore carefully screen individuals with KS for anxiety as well as other behavioral issues in order to allow for prompt intervention. Neurobehavioral anxiety measures may also prove to be important outcome measures for clinical trials in KS.

6.
Am J Med Genet A ; 188(10): 3041-3048, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35930004

RESUMEN

Kabuki syndrome (KS) is a rare epigenetic disorder caused by heterozygous loss of function variants in either KMT2D (90%) or KDM6A (10%), both involved in regulation of histone methylation. While sleep disturbance in other Mendelian disorders of the epigenetic machinery has been reported, no study has been conducted on sleep in KS. This study assessed sleep in 59 participants with KS using a validated sleep questionnaire. Participants ranged in age from 4 to 43 years old with 86% of participants having a pathogenic variant in KMT2D. In addition, data on adaptive function, behavior, anxiety, and quality of life were collected using their respective questionnaires. Some form of sleep issue was present in 71% of participants, with night-waking, daytime sleepiness, and sleep onset delay being the most prevalent. Sleep dysfunction was positively correlated with maladaptive behaviors, anxiety levels, and decreasing quality of life. Sleep issues were not correlated with adaptive function. This study establishes sleep disturbance as a common feature of KS. Quantitative sleep measures may be a useful outcome measure for clinical trials in KS. Further, clinicians caring for those with KS should consider sleep dysfunction as an important feature that impacts overall health and well being in these patients.


Asunto(s)
Enfermedades Hematológicas , Enfermedades Vestibulares , Anomalías Múltiples , Adolescente , Adulto , Niño , Preescolar , Cara/anomalías , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Histona Demetilasas/genética , Humanos , Mutación , Calidad de Vida , Sueño , Enfermedades Vestibulares/complicaciones , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Adulto Joven
7.
Elife ; 102021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463256

RESUMEN

Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations, we interrogate chromatin (ATAC-seq) and expression (RNA-seq) states in B cells from three MDEM mouse models (Kabuki [KS] type 1 and 2 and Rubinstein-Taybi type 1 [RT1] syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.


Asunto(s)
Anomalías Múltiples/genética , Epigénesis Genética/genética , Cara/anomalías , Variación Genética/genética , Enfermedades Hematológicas/genética , Síndrome de Rubinstein-Taybi/genética , Transcriptoma/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/metabolismo , Animales , Cromatina/genética , Modelos Animales de Enfermedad , Femenino , Técnicas Genéticas , Enfermedades Hematológicas/metabolismo , Ratones , Fenotipo , Síndrome de Rubinstein-Taybi/metabolismo , Enfermedades Vestibulares/metabolismo
8.
Front Bioeng Biotechnol ; 9: 621286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211963

RESUMEN

Three-dimensional (3D) collective cell migration (CCM) is critical for improving liver cell therapies, eliciting mechanisms of liver disease, and modeling human liver development and organogenesis. Mechanisms of CCM differ in 2D vs. 3D systems, and existing models are limited to 2D or transwell-based systems, suggesting there is a need for improved 3D models of CCM. To recreate liver 3D CCM, we engineered in vitro 3D models based upon a morphogenetic transition that occurs during liver organogenesis, which occurs rapidly between E8.5 and E9.5 (mouse). During this morphogenetic transition, 3D CCM exhibits co-migration (multiple cell types), thick-strand interactions with surrounding septum transversum mesenchyme (STM), branching morphogenesis, and 3D interstitial migration. Here, we engineer several 3D in vitro culture systems, each of which mimics one of these processes in vitro. In mixed spheroids bearing both liver cells and uniquely MRC-5 (fetal lung) fibroblasts, we observed evidence of co-migration, and a significant increase in length and number of liver spheroid protrusions, which was highly sensitive to transforming growth factor beta 1 (TGFß1) stimulation. In MRC-5-conditioned medium (M-CM) experiments, we observed dose-dependent branching morphogenesis associated with an upregulation of Twist1, which was inhibited by a broad TGFß inhibitor. In models in which liver spheroids and MRC-5 spheroids were co-cultured, we observed complex strand morphogenesis, whereby thin, linear, 3D liver cell strands attach to the MRC-5 spheroid, anchor and thicken to form permanent and thick anchoring contacts between the two spheroids. In these spheroid co-culture models, we also observed spheroid fusion and strong evidence for interstitial migration. In conclusion, we present several novel cultivation systems that recreate distinct features of liver 3D CCM. These methodologies will greatly improve our molecular, cellular, and tissue-scale understanding of liver organogenesis, liver diseases like cancer, and liver cell therapy, and will also serve as a tool to bridge conventional 2D studies and preclinical in vivo studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...