Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Cell Biol ; 96(2): 107-116, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29112458

RESUMEN

In western countries, alcohol consumption is widespread in women of reproductive age, and in binge quantities. These countries also continue to have high incidences of unplanned pregnancies, with women often reported to cease drinking after discovering their pregnancy. This suggests the early embryo may be highly exposed to the detrimental effects of alcohol during the periconception period. The periconception and pre-implantation windows, which include maturation of the oocyte, fertilisation, and morphogenesis of the pre-implantation embryo, are particularly sensitive times of development. Within the oviduct and uterus, the embryo is exposed to a unique nutritional environment to facilitate its development and establish de-novo expression of the genome through epigenetic reprogramming. Alcohol has wide-ranging effects on cellular stress, as well as hormonal, and nutrient signalling pathways, which may affect the development and metabolism of the early embryo. In this review, we summarise the adverse developmental outcomes of early exposure to alcohol (prior to implantation in animal models) and discuss the potential mechanisms for these outcomes that may occur within the protected oviductal and uterine environment. One interesting candidate is reduced retinoic acid synthesis, as it is implicated in the control of epigenetic reprogramming and cell lineage commitment, processes that have adverse consequences for the formation of the placenta, and subsequently, fetal programming.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Blastocisto , Desarrollo Embrionario , Epigénesis Genética , Fertilización , Regulación del Desarrollo de la Expresión Génica , Animales , Femenino , Humanos , Masculino
2.
Biol Sex Differ ; 8: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28523122

RESUMEN

BACKGROUND: A male fetus is suggested to be more susceptible to in utero and birth complications. This may be due in part to altered morphology or function of the XY placenta. We hypothesised that sexual dimorphism begins at the blastocyst stage with sex differences in the progenitor trophectoderm (TE) and its derived trophoblast lineages, as these cells populate the majority of cell types within the placenta. We investigated sex-specific differences in cell allocation in the pre-implantation embryo and further characterised growth and gene expression of the placental compartments from the early stages of the definitive placenta through to late gestation. METHODS: Naturally mated Sprague Dawley dams were used to collect blastocysts at embryonic day (E) 5 to characterise cell allocation; total, TE, and inner cell mass (ICM), and differentiation to downstream trophoblast cell types. Placental tissues were collected at E13, E15, and E20 to characterise volumes of placental compartments, and sex-specific gene expression profiles. RESULTS: Pre-implantation embryos showed no sex differences in cell allocation (total, TE and ICM) or early trophoblast differentiation, assessed by outgrowth area, number and ploidy of trophoblasts and P-TGCs, and expression of markers of trophoblast stem cell state or differentiation. Whilst no changes in placental structures were found in the immature E13 placenta, the definitive E15 placenta from female fetuses had reduced labyrinthine volume, fetal and maternal blood space volume, as well as fetal blood space surface area, when compared to placentas from males. No differences between the sexes in labyrinth trophoblast volume or interhaemal membrane thickness were found. By E20 these sex-specific placental differences were no longer present, but female fetuses weighed less than their male counterparts. Coupled with expression profiles from E13 and E15 placental samples may suggest a developmental delay in placental differentiation. CONCLUSIONS: Although there were no overt differences in blastocyst cell number or early placental development, reduced growth of the female labyrinth in mid gestation is likely to contribute to lower fetal weight in females at E20. These data suggest sex differences in fetal growth trajectories are due at least in part, to differences in placenta growth.


Asunto(s)
Placenta/embriología , Placentación , Caracteres Sexuales , Animales , Recuento de Células , Diferenciación Celular , Vellosidades Coriónicas/embriología , Vellosidades Coriónicas/metabolismo , Implantación del Embrión , Femenino , Edad Gestacional , Masculino , Placenta/citología , Placenta/metabolismo , Embarazo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
3.
Placenta ; 54: 10-16, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27979377

RESUMEN

Exposure of the embryo or fetus to perturbations in utero can result in intrauterine growth restriction, a primary risk factor for the development of adult disease. However, despite similar exposures, males and females often have altered disease susceptibility or progression from different stages of life. Fetal growth is largely mediated by the placenta, which, like the fetus is genetically XX or XY. The placenta and its associated trophoblast lineages originate from the trophectoderm (TE) of the early embryo. Rodent models (rat, mouse, spiny mouse), have been used extensively to examine placenta development and these have demonstrated the growth trajectory of the placenta in females is generally slower compared to males, and also shows altered adaptive responses to stressful environments. These placental adaptations are likely to depend on the type of stressor, duration, severity and the window of exposure during development. Here we describe the divergent developmental pathways between the male and female placenta contributing to altered differentiation of the TE derived trophoblast subtypes, placental growth, and formation of the placental architecture. Our focus is primarily genetic or environmental perturbations in rodent models which show altered placental responsiveness between sexes. We suggest that perturbations during early placental development may have greater impact on viability and growth of the female fetus whilst those occurring later in gestation may preferentially affect the male fetus. This may be of great relevance to human pregnancies which result from assisted reproductive technologies or complications such as pre-eclampsia and diabetes.


Asunto(s)
Placenta/fisiología , Placentación , Caracteres Sexuales , Animales , Femenino , Humanos , Placenta/irrigación sanguínea , Embarazo
4.
Placenta ; 46: 87-91, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27697226

RESUMEN

Maternal alcohol consumption is common prior to pregnancy recognition and in the rat results in altered placental development and fetal growth restriction. To assess the effect of ethanol (EtOH) exposure on the differentiation of trophoblast stem (TS) cells, mouse TS lines were differentiated in vitro for 6 days in 0%, 0.2% or 1% EtOH. This reduced both trophoblast survival and expression of labyrinth and junctional zone trophoblast subtype-specific genes. This suggests that fetal growth restriction and altered placental development associated with maternal alcohol consumption in the periconceptional period could be mediated in part by direct effects on trophoblast development.


Asunto(s)
Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Proteínas Gestacionales/metabolismo , Trofoblastos/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Ratones , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...