Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(5): e10046, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37193112

RESUMEN

Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.

2.
Nat Hum Behav ; 6(3): 371-382, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35165434

RESUMEN

Transnational ivory traffickers continue to smuggle large shipments of elephant ivory out of Africa, yet prosecutions and convictions remain few. We identify trafficking networks on the basis of genetic matching of tusks from the same individual or close relatives in separate shipments. Analyses are drawn from 4,320 savannah (Loxodonta africana) and forest (L. cyclotis) elephant tusks, sampled from 49 large ivory seizures totalling 111 t, shipped out of Africa between 2002 and 2019. Network analyses reveal a repeating pattern wherein tusks from the same individual or close relatives are found in separate seizures that were containerized in, and transited through, common African ports. Results suggest that individual traffickers are exporting dozens of shipments, with considerable connectivity between traffickers operating in different ports. These tools provide a framework to combine evidence from multiple investigations, strengthen prosecutions and support indictment and prosecution of transnational ivory traffickers for the totality of their crimes.


Asunto(s)
Elefantes , África , Animales , Conservación de los Recursos Naturales , Crimen , Elefantes/genética , Genotipo , Humanos
3.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568918

RESUMEN

Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants.


Asunto(s)
Quirópteros , Piper , Receptores Odorantes , Animales , Quirópteros/genética , Dieta , Frutas , Receptores Odorantes/genética
4.
Proc Biol Sci ; 288(1956): 20210312, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34375556

RESUMEN

Despite the widespread notion that animal-mediated seed dispersal led to the evolution of fruit traits that attract mutualistic frugivores, the dispersal syndrome hypothesis remains controversial, particularly for complex traits such as fruit scent. Here, we test this hypothesis in a community of mutualistic, ecologically important neotropical bats (Carollia spp.) and plants (Piper spp.) that communicate primarily via chemical signals. We found greater bat consumption is significantly associated with scent chemical diversity and presence of specific compounds, which fit multi-peak selective regime models in Piper. Through behavioural assays, we found Carollia prefer certain compounds, particularly 2-heptanol, which evolved as a unique feature of two Piper species highly consumed by these bats. Thus, we demonstrate that volatile compounds emitted by neotropical Piper fruits evolved in tandem with seed dispersal by scent-oriented Carollia bats. Specifically, fruit scent chemistry in some Piper species fits adaptive evolutionary scenarios consistent with a dispersal syndrome hypothesis. While other abiotic and biotic processes likely shaped the chemical composition of ripe fruit scent in Piper, our results provide some of the first evidence of the effect of bat frugivory on plant chemical diversity.


Asunto(s)
Quirópteros , Dispersión de Semillas , Animales , Conducta Alimentaria , Frutas , Odorantes , Simbiosis
5.
Mol Phylogenet Evol ; 148: 106817, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32289447

RESUMEN

Although best known for its extraordinary radiations of endemic plant species, the South African fynbos is home to a great diversity of phytophagous insects, including butterflies in the genus Chrysoritis (Lepidoptera: Lycaenidae). These butterflies are remarkably uniform morphologically; nevertheless, they comprise 43 currently accepted species and 68 currently valid taxonomic names. While many species have highly restricted, dot-like distributions, others are widespread. Here, we investigate the phylogenetic and biogeographic history underlying their diversification by analyzing molecular markers from 406 representatives of all described species throughout their respective ranges. We recover monophyletic clades for both C. chrysaor and C. thysbe species-groups, and identify a set of lineages that fall between them. The estimated age of divergence for the genus is 32 Mya, and we document significantly rapid diversification of the thysbe species-group in the Pleistocene (~2 Mya). Using ancestral geographic range reconstruction, we show that West Fynbos is the most likely region of origin for the radiation of the thysbe species-group. The colonization of this region occurred 9 Mya and appears to have been followed by a long period of relative stasis before a recent increase in diversification. Thus, the thysbe radiation does not appear to have resulted from the colonization of new biogeographic areas. Rather, the impact of species interactions (with ants and plants), the appearance of key innovations, and/or the opening of new ecological niche space in the region might explain the sudden burst of speciation that occurred in this group 2 Mya. The biogeographic model suggests two different diversification processes with few historical cross-colonisations, one in eastern South Africa for the C. chrysaor group and the other in western South Africa for the remaining taxa. Distributional range assessments and ecological niche models for each species show important niche overlap, and in a few cases, complete overlap. However, these shared traits are not explained by phylogenetic history. Chrysoritis taxa frequently fly in sympatry and gene tree reticulation appears to be widespread at the species level, suggesting that several episodes of range shifts might have led to secondary sympatries, allowing limited gene flow that challenges species delimitation efforts. In addition, the unusually high diversification rate for the thysbe clade of 1.35 [0.91-1.81] lineages per million years also suggests the possibility of taxonomic oversplitting. The phylogeny presented here provides a framework for a taxonomic revision of the genus. We highlight cases of potential synonymy both in allopatry and sympatry, and stress the importance of dedicated studies to assess potential pre- and post-zygotic barriers giving rise to species delimitations of the thysbe group.


Asunto(s)
Biodiversidad , Mariposas Diurnas/clasificación , Animales , Filogeografía , Sudáfrica , Simpatría
6.
Proc Biol Sci ; 285(1886)2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209224

RESUMEN

The role of specialization in diversification can be explored along two geological axes in the butterfly family Lycaenidae. In addition to variation in host-plant specialization normally exhibited by butterflies, the caterpillars of most Lycaenidae have symbioses with ants ranging from no interactions through to obligate and specific associations, increasing niche dimensionality in ant-associated taxa. Based on mitochondrial sequences from 8282 specimens from 967 species and 249 genera, we show that the degree of ecological specialization of lycaenid species is positively correlated with genetic divergence, haplotype diversity and an increase in isolation by distance. Nucleotide substitution rate is higher in carnivorous than phytophagous lycaenids. The effects documented here for both micro- and macroevolutionary processes could result from increased spatial segregation as a consequence of reduced connectivity in specialists, niche-based divergence or a combination of both. They could also provide an explanation for the extraordinary diversity of the Lycaenidae and, more generally, for diversity in groups of organisms with similar multi-dimensional ecological specialization.


Asunto(s)
Hormigas/fisiología , Mariposas Diurnas/fisiología , Simbiosis , Animales , Mariposas Diurnas/genética , Complejo IV de Transporte de Electrones/análisis , Genes Mitocondriales , Proteínas de Insectos/análisis , Filogenia
7.
Evolution ; 69(3): 571-88, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25639142

RESUMEN

Of the four most diverse insect orders, Lepidoptera contains remarkably few predatory and parasitic species. Although species with these habits have evolved multiple times in moths and butterflies, they have rarely been associated with diversification. The wholly aphytophagous subfamily Miletinae (Lycaenidae) is an exception, consisting of nearly 190 species distributed primarily throughout the Old World tropics and subtropics. Most miletines eat Hemiptera, although some consume ant brood or are fed by ant trophallaxis. A well-resolved phylogeny inferred using 4915 bp from seven markers sampled from representatives of all genera and nearly one-third the described species was used to examine the biogeography and evolution of biotic associations in this group. Biogeographic analyses indicate that Miletinae likely diverged from an African ancestor near the start of the Eocene, and four lineages dispersed between Africa and Asia. Phylogenetic constraint in prey selection is apparent at two levels: related miletine species are more likely to feed on related Hemiptera, and related miletines are more likely to associate with related ants, either directly by eating the ants, or indirectly by eating hemipteran prey that are attended by those ants. These results suggest that adaptations for host ant location by ovipositing female miletines may have been retained from phytophagous ancestors that associated with ants mutualistically.


Asunto(s)
Evolución Biológica , Lepidópteros/clasificación , Filogenia , África , Animales , Hormigas , Asia , Teorema de Bayes , Larva , Estadios del Ciclo de Vida , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía , Conducta Predatoria , Análisis de Secuencia de ADN
8.
Genetics ; 184(2): 529-45, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19966069

RESUMEN

Neutral nucleotide diversity does not scale with population size as expected, and this "paradox of variation" is especially severe for animal mitochondria. Adaptive selective sweeps are often proposed as a major cause, but a plausible alternative is selection against large numbers of weakly deleterious mutations subject to Hill-Robertson interference. The mitochondrial genealogies of several species of whale lice (Amphipoda: Cyamus) are consistently too short relative to neutral-theory expectations, and they are also distorted in shape (branch-length proportions) and topology (relative sister-clade sizes). This pattern is not easily explained by adaptive sweeps or demographic history, but it can be reproduced in models of interference among forward and back mutations at large numbers of sites on a nonrecombining chromosome. A coalescent simulation algorithm was used to study this model over a wide range of parameter values. The genealogical distortions are all maximized when the selection coefficients are of critical intermediate sizes, such that Muller's ratchet begins to turn. In this regime, linked neutral nucleotide diversity becomes nearly insensitive to N. Mutations of this size dominate the dynamics even if there are also large numbers of more strongly and more weakly selected sites in the genome. A genealogical perspective on Hill-Robertson interference leads directly to a generalized background-selection model in which the effective population size is progressively reduced going back in time from the present.


Asunto(s)
Ambiente , Genes/genética , Patrón de Herencia/genética , Modelos Genéticos , Mutación , Algoritmos , Animales , ADN Mitocondrial/genética , Evolución Molecular , Femenino , Genes de Insecto/genética , Masculino , Phthiraptera/genética , Phthiraptera/fisiología , Densidad de Población , Selección Genética , Ballenas/parasitología
9.
Mol Ecol ; 14(11): 3439-56, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16156814

RESUMEN

Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.


Asunto(s)
Anfípodos/genética , Evolución Molecular , Variación Genética , Genética de Población , Ballenas/parasitología , Animales , Secuencia de Bases , Cartilla de ADN , ADN Mitocondrial/genética , Geografía , Interacciones Huésped-Parásitos , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Densidad de Población , Dinámica Poblacional , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...