Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Discov Nano ; 19(1): 30, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372836

RESUMEN

Carbon nanotubes (CNTs) filled natural rubber (NR) composites with various CNT contents at 0, 1, 2, 3, 4 and 5 phr were prepared by latex mixing method using glutaraldehyde as curing agent. This work aims to improve the electrical and mechanical properties of CNT filled NR vulcanizates. The CNT dispersion of NR composites was clarified using dispersion grader, optical microscopy and scanning electron microscopy. The electrical properties of NR composites in the existing of CNT networks were studied by following the well-known percolation theory. It was observed that the NR composites exhibited low percolation threshold at 0.98 phr of CNT. Moreover, a three-dimensional network formation of CNT in the NR composites was observed and it is indicated by the t-value of 1.67. The mechanical properties of NR composites in terms of modulus, tensile strength and hardness properties were increased upon the addition of CNT to the optimum mechanical properties at 1 phr of CNT. Therefore, the present work is found the novelty of the study that the conductive rubber latex film can be produced using GA as low-temperature curing agent which enhanced good electrical properties. Moreover, this work is found to be beneficial in case of conductive rubber latex film that requires high modulus at low strain. The additional advantage of this system is the curing process occurs at low-temperature using GA and it can be easily processed.

2.
Polymers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771847

RESUMEN

Flexible self-healing composite was fabricated based on blending the bromobutyl rubber (BIIR) and epoxide natural rubber (ENR) filled with hybrid fillers of carbon nanotubes (CNT) and carbon black (CB). To achieve self-recoverability, modification of BIIR was carried out through butyl imidazole (IM), and the healing capability was then activated by the addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT), which resulted in good dispersion of CNT/CB in BIIR/ENR blends. The silanization of TESPT and CNT/CB hybrid filler surfaces was confirmed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Adding CNT/CB and incorporating TESPT into the composites effectively improved the curing and mechanical properties of the blends in terms of estimated crosslink density and tensile modulus. Further, the self-healing propagation rate was enhanced by the thermal conductivity of fillers and the ion-dipole intermolecular forces between the rubber chains, leading to the highest abrasion resistance and electrical conductivity. Using an environmentally friendly process, the recyclability of the self-healing composites was improved by the re-compression of the samples. With this, the constant conductivity relating to the rearrangement of the CNT/CB network is examined related to the usability of the composites at 0 and 60 °C. The conductive composites filled with a TESPT silane coupling agent present an opportunity for vehicle tires and other self-repairing applications.

3.
Polymers (Basel) ; 14(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080590

RESUMEN

Novel composite based on rubber and modified bentonite clay (Clay) was investigated. The modified bentonite clay was developed by dispersing in ethanol solutions (Et-OH) using ultrasonic method. The effect of Et-OH on the dispersion of bentonite clay at various mixing temperatures in case of different type of rubber matrix, i.e., natural rubber (NR), epoxidized natural rubber (ENR25, ENR50) on dynamic mechanical rheology, Payne effect, XRD and mechanical properties of rubber composites were studied in detail. The bentonite clay dispersion in Et-OH at a mixing temperature of 80 °C improves the intercalation and exfoliation in rubber chains. Bentonite clay is highly intercalated in ENR 50-Clay composite, which can be confirmed from its superior mechanical properties. The results indicated that sonication of bentonite clay in Et-OH improves the interlayer spacing of bentonite clay by partial intercalation of rubber matrix.

4.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35566931

RESUMEN

Natural rubber from different Hevea braziliensis clones, namely RRIM600, RRIT251, PB235 and BPM24, exhibit unique properties. The influences of the various fresh natural rubber latex and cream concentrated latex on the non-rubber components related properties were studied. It was found that the fresh natural rubber latex exhibited differences in their particle size, which was attributed to the non-rubber and unique signature of clones which affect various properties. Meanwhile, the cream concentrated latex showed the protein contents, surface tension, and color of creamed latex to be lower than the fresh natural latex. However, TSC, DRC, viscosity, particle size and green strength of concentrated latex were found to be higher than the fresh natural latex. This is attributed to the incorporation of HEC molecules. Also, the rubber particle size distribution in the RRIM600 clone exhibited a large particle size and uniform distribution, showing good mechanical properties when compared to the other clones. Furthermore, the increased green strength in the RRIM600 clone can be attributed to the crystallization of the chain on straining and chain entanglement. These experimental results may provide benefits for manufacturing rubber products, which can be selected from a suitable clone.

5.
Biotechnol J ; 16(9): e2100030, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34102004

RESUMEN

Failure in the prevention of cross-transmission from contaminated gloves has been recognized as an important factor that contributes to the spread of several healthcare-associated infections. Ex situ coating process with silver nanoparticles (AgNPs) using Eucalyptus citriodora ethanolic leaf extract as reducing and capping agents to coat glove surfaces has been developed to prevent this mode of transmission. Elemental analysis of coated gloves showed 24.8 Wt% silver densely adhere on the surface. The coated gloves fully eradicated important hospital-acquired pathogens including Gram-positive bacteria, Gram-negative bacteria, and yeasts within 1 h. The coated gloves showed significant reduction, an average of five logs when tested against all standard strains and most clinical isolates (p < 0.01). Following prolonged exposure, the coating significantly reduced the numbers of most adhered pathogenic species, compared with uncoated gloves (p < 0.0001). AgNPs-coated gloves reduced microbial adhesion of mixed-species biofilms. A series of contamination and transmission assays demonstrated no transmission of viable organisms. Biocompatibility analysis confirmed high viability of HaCaT and L929 cells at all concentrations of AgNPs tested. The coated gloves were non-toxic with direct contact with L929 cells. The highly efficacious AgNPs-coated gloves potentially provide additional protection against transmission of healthcare-associated infections.


Asunto(s)
Antiinfecciosos , Infección Hospitalaria , Eucalyptus , Nanopartículas del Metal , Antibacterianos/farmacología , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Plata/farmacología
6.
Polymers (Basel) ; 13(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573166

RESUMEN

The self-healing composites were prepared from the combination of bromobutyl rubber (BIIR) and natural rubber (NR) blends filled with carbon nanotubes (CNT) and carbon black (CB). To reach the optimized self-healing propagation, the BIIR was modified with ionic liquid (IL) and butylimidazole (IM), and blended with NR using the ratios of 70:30 and 80:20 BIIR:NR. Physical and chemical modifications were confirmed from the mixing torque and attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR). It was found that the BIIR/NR-CNTCB with IL and IM effectively improved the cure properties with enhanced tensile properties relative to pure BIIR/NR blends. For the healed composites, BIIR/NR-CNTCB-IM exhibited superior mechanical and electrical properties due to the existing ionic linkages in rubber matrix. For the abrasion resistances, puncture stress and electrical recyclability were examined to know the possibility of inner liner applications and Taber abrasion with dynamic mechanical properties were elucidated for tire tread applications. Based on the obtained Tg and Tan δ values, the composites are proposed for tire applications in the future with a simplified preparation procedure.

7.
Polymers (Basel) ; 13(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430498

RESUMEN

A novel active bio-based pressure-sensitive adhesive incorporating cinnamon oil (Bio-PSA/CO) obtained from the mixture of natural rubber (NR), xyloglucan (XG), and cinnamon oil (CO) for food antimicrobial applications were successfully developed by using a two-roll mill mixer. The effect of the main process factors (i.e., nip gap and mastication time) and XG content on the adhesion properties of the obtained PSA were investigated with different coated substrates including kraft paper, nylon film, polypropylene (PP) film, and aluminum foil (Al). The results suggested that the developed NR-PSA/CO could be applied well to all types of substrate materials. Peel strength and shear strength of the NR-PSA/CO with all substrate types were in the ranges of ~0.03 × 102-5.64 × 102 N/m and ~0.24 × 104-9.50 × 104 N/m2, respectively. The proper processed condition of the NR-PSA/CO was represented with a nip gap of 2 mm and a mastication time of 15 min. An increase in XG content up to 40-60 phr can improve the adhesion properties of the adhesive. The resulting material could be used as an active sticky patch to extend the shelf-life of food in a closed packaging system. The shelf-life of the food samples (banana cupcake) could be extended from 4 to 9 days with NR-PSA/CO patch.

8.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374236

RESUMEN

The property retentions of silica-reinforced natural rubber vulcanizates with various contents of a self-healing modifier called EMZ, which is based on epoxidized natural rubber (ENR) modified with hydrolyzed maleic anhydride (HMA) as an ester crosslinking agent plus zinc acetate dihydrate (ZAD) as a transesterification catalyst, were investigated. To validate its self-healing efficiency, the molecular-scale damages were introduced to vulcanizates using a tensile stress-strain cyclic test following the Mullins effect concept. The processing characteristics, reinforcing indicators, and physicomechanical and viscoelastic properties of the compounds were evaluated to identify the influences of plausible interactions in the system. Overall results demonstrate that the property retentions are significantly enhanced with increasing EMZ content at elevated treatment temperatures, because the EMZ modifier potentially contributes to reversible linkages leading to the intermolecular reparation of rubber network. Furthermore, a thermally annealing treatment of the damaged vulcanizates at a high temperature, e.g., 120 °C, substantially enhances the property recovery degree, most likely due to an impact of the transesterification reaction of the ester crosslinks adjacent to the molecular damages. This reaction can enable bond interchanges of the ester crosslinks, resulting in the feasibly exchanged positions of the ester crosslinks between the broken rubber molecules and, thus, achievable self-reparation of the damages.

9.
Polymers (Basel) ; 12(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092210

RESUMEN

Flexible thermoplastic elastomers (TPE) were prepared for fused deposition modeling (FDM) or 3D printing. These materials can be used for medical purposes such as disposable soft splints and other flexible devices. Blends of 50% epoxidized natural rubber (ENR-50) and block rubber (Standard Thai Rubber 5L (STR5L)) with polycaprolactone (PCL) were produced and compared. The purpose of this study was to investigate the properties of natural rubber (NR) and PCL in simple blends with PCL contents of 40%, 50%, and 60% by weight (except at 75% for morphology study) in the base mixture (NR/PCL). The significant flow factors for FDM materials, such as melting temperature (Tm) and melt flow rate (MFR), were observed by differential scanning calorimetry (DSC) and via the melt flow index (MFI). In addition, the following mechanical properties were also determined: tensile strength, compression set, and hardness. The results from DSC showed that the melting temperature changed slightly (1-2 °C) with amount of PCL used, and there was a suspicious point in the 50/50 blends with both types of rubber. The lowest melting enthalpy of both blends was found at the 50/50 blended composition. The MFI results showed that PCL significantly affected the melt flow rate of both blends. The ENR-50/PCL blend flowed better than the STR5L/PCL blend. The conclusion was that this was due to the morphology of its phase structure having better uniformity than that of the STR5L/PCL blend. In compression set testing or measuring shape recovery, rubber directly influenced the recovery in all blends. The ENR-50/PCL blend had less recovery than the STR5L/PCL blend, probably due to the functional effects of epoxide groups and polarity mismatch. The hard phase PCL significantly affected the hardness of samples but improved shape recovery of the material. The ENR-50/PCL blend had better tensile properties than the STR5L/PCL blend. The elongation at break of both blends improved with a high rubber content. Hence, the ENR-50/PCL blend was superior to STR5L/PCL for printing purposes due to its better miscibility, uniformity, and flow, which are the keys to success for optimizing the fused deposition modeling conditions as well as the overall mechanical properties of products. Most blends in this study were only slightly different, but the 50/50 blend of ENR-50/PCL seemed to be near optimal for 3D printing.

10.
Polymers (Basel) ; 11(8)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31409053

RESUMEN

Nanoclay-modified polyisoprene latexes were prepared and then used as a reinforcing component in natural rubber (NR) thin films. Starve-fed emulsion (SFE) polymerization gives a higher conversion than the batch emulsion (BE), while the gel and coagulation contents from both systems are comparable. This is attributed to the SFE that provides a smaller average polymer particle size which in turn results in a greater polymerization locus, promoting the reaction rate. The addition of organo-nanoclay during synthesizing polyisoprene significantly lessens the polymerization efficiency because the nanoclay has a potential to suppress nucleation process of the reaction. It also intervenes the stabilizing efficiency of the surfactant-SDS or sodium dodecyl sulfate, giving enlarged average sizes of the polymer particles suspended in the latexes. TEM images show that nanoclay particles are attached on and/or inserted in the polymer particles. XRD and thermal (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)) analyses were employed to assess the d-spacing of nanoclay structure in NR nanocomposite films, respectively. Based on the overall results, 5 wt% of nanoclay relative to the monomer content utilized to alter the polyisoprene during emulsion polymerization is an optimum amount since the silicate plates of nanoclay in the composite exhibit the largest d-spacing which maximizes the extent of immobilized polymer constituent, giving the highest mechanical properties to the films. The excessive amounts of nanoclay used, i.e., 7 and 10 wt% relative to the monomer content, reduce the reinforcing power because of the re-agglomeration effect.

11.
West J Emerg Med ; 21(1): 91-95, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31913826

RESUMEN

INTRODUCTION: A barrier to cardiopulmonary resuscitation (CPR) training in low-income countries is limited resources. Our goal was to build a CPR training model of simple design that would provide a good feedback system. METHODS: We developed a low-cost, Basic Life Support training manikin made entirely of natural rubber. Our in-house manikin provides feedback when performing correct chest compression and rescue breathing. The properties of the manikin were tested using simulated chest compression in a laboratory and compared with a commercial manikin. Forty healthy nurse volunteers with CPR experience performed CPR in both types of manikins and responded to questionnaires. RESULTS: A tensile test in a laboratory demonstrated that both types of manikins had acceptable ranges of properties for real-situation CPR in cardiac arrest patients. There were no differences in aesthetic properties, and the manikins felt to the volunteers like a real patient when they were performing chest compression. The feedback response was clear when chest compressions and rescue breathing were performed correctly, and the overall satisfaction with the manikin was good. In addition, the mean scores in terms of the manikin feeling like a real patient when performing rescue breathing and the positive feedback from the rubber manikin were statistically higher than those for the commercial manikin (p=0.001 vs. p=0.023). CONCLUSION: The in-house developed CPR manikin employing real-time feedback by simple mechanics is effective compared with a commercial manikin. The advantage of our manikin is that it is easy to build and costs substantially less than a commercial manikin. The use of an in-house developed manikin could make effective CPR training more available in limited-resource areas.


Asunto(s)
Reanimación Cardiopulmonar/educación , Enfermería de Urgencia/educación , Maniquíes , Satisfacción Personal , Adulto , Reanimación Cardiopulmonar/métodos , Diseño de Equipo , Retroalimentación , Femenino , Paro Cardíaco/terapia , Humanos , Masculino , Persona de Mediana Edad , Enfermeras y Enfermeros/psicología , Presión , Goma , Voluntarios , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...