Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 26(4): 864-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25214579

RESUMEN

The cilium is a signaling platform of the vertebrate cell. It has a critical role in polycystic kidney disease and nephronophthisis. Cilia have been detected on endothelial cells, but the function of these organelles in the vasculature remains incompletely defined. In this study, using genetic and chemical genetic tools in the model organism zebrafish, we reveal an essential role of cilia in developmental vascular integrity. Embryos expressing mutant intraflagellar transport genes, which are essential and specific for cilia biogenesis, displayed increased risk of developmental intracranial hemorrhage, whereas the morphology of the vasculature remained normal. Moreover, cilia were present on endothelial cells in the developing zebrafish vasculature. We further show that the involvement of cilia in vascular integrity is endothelial autonomous, because endothelial-specific re-expression of intraflagellar transport genes in respective mutants rescued the intracranial hemorrhage phenotype. Finally, whereas inhibition of Hedgehog signaling increased the risk of intracranial hemorrhage in ciliary mutants, activation of the pathway rescued this phenotype. In contrast, embryos expressing an inactivating mutation in pkd2, one of two autosomal dominant cystic kidney disease genes, did not show increased risk of developmental intracranial hemorrhage. These results suggest that Hedgehog signaling is a major mechanism for this novel role of endothelial cilia in establishing vascular integrity.


Asunto(s)
Cilios/fisiología , Endotelio Vascular/fisiología , Proteínas Hedgehog/metabolismo , Hemorragias Intracraneales/etiología , Animales , Células Endoteliales/citología , Mecanotransducción Celular , Canales Catiónicos TRPP/fisiología , Pez Cebra
2.
Proc Natl Acad Sci U S A ; 110(31): 12697-702, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858445

RESUMEN

Primary ciliary dyskinesia (PCD) is an autosomal recessive disease caused by defective cilia motility. The identified PCD genes account for about half of PCD incidences and the underlying mechanisms remain poorly understood. We demonstrate that Reptin/Ruvbl2, a protein known to be involved in epigenetic and transcriptional regulation, is essential for cilia motility in zebrafish. We further show that Reptin directly interacts with the PCD protein Lrrc6/Seahorse and this interaction is critical for the in vivo function of Lrrc6/Seahorse in zebrafish. Moreover, whereas the expression levels of multiple dynein arm components remain unchanged or become elevated, the density of axonemal dynein arms is reduced in reptin(hi2394) mutants. Furthermore, Reptin is highly enriched in the cytosol and colocalizes with Lrrc6/Seahorse. Combined, these results suggest that the Reptin-Lrrc6/Seahorse complex is involved in dynein arm formation. We also show that although the DNA damage response is induced in reptin(hi2394) mutants, it remains unchanged in cilia biogenesis mutants and lrrc6/seahorse mutants, suggesting that increased DNA damage response is not intrinsic to ciliary defects and that in vertebrate development, Reptin functions in multiple processes, both cilia specific and cilia independent.


Asunto(s)
Dineínas Axonemales/metabolismo , Axonema/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Dineínas Axonemales/genética , Axonema/genética , Cilios/genética , Cilios/metabolismo , Daño del ADN , Mutación , Proteínas Nucleares/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
G3 (Bethesda) ; 2(1): 1-14, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22384376

RESUMEN

The multifunctional factors Imp-α and Imp-ß are involved in nuclear protein import, mitotic spindle dynamics, and nuclear membrane formation. Furthermore, each of the three members of the Imp-α family exerts distinct tasks during development. In Drosophila melanogaster, the imp-α2 gene is critical during oogenesis for ring canal assembly; specific mutations, which allow oogenesis to proceed normally, were found to block early embryonic mitosis. Here, we show that imp-α2 and imp-ß genetically interact during early embryonic development, and we characterize the pattern of defects affecting mitosis in embryos laid by heterozygous imp-α2(D14) and imp-ß(KetRE34) females. Embryonic development is arrested in these embryos but is unaffected in combinations between imp-ß(KetRE34) and null mutations in imp-α1 or imp-α3. Furthermore, the imp-α2(D14)/imp-ß(KetRE34) interaction could only be rescued by an imp-α2 transgene, albeit not imp-α1 or imp-α3, showing the exclusive imp-α2 function with imp-ß. Use of transgenes carrying modifications in the major Imp-α2 domains showed the critical requirement of the nuclear localization signal binding (NLSB) site in this process. In the mutant embryos, we found metaphase-arrested mitoses made of enlarged spindles, suggesting an unrestrained activity of factors promoting spindle assembly. In accordance with this, we found that Imp-ß(KetRE34) and Imp-ß(KetD) bind a high level of RanGTP/GDP, and a deletion decreasing RanGTP level suppresses the imp-ß(KetRE34) phenotype. These data suggest that a fine balance among Imp-α2, Imp-ß, RanGTP, and the NLS cargos is critical for mitotic progression during early embryonic development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...