Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(21)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259992

RESUMEN

In this paper, we use the previously introduced Canonical Polyadic (CP)-Multiple Shift Block Inverse Iteration (MSBII) eigensolver [S. D. Kallullathil and T. Carrington, J. Chem. Phys. 155, 234105 (2021)] in conjunction with a contraction tree to compute vibrational spectra. The CP-MSBII eigensolver uses the CP format. The memory cost scales linearly with the number of coordinates. A tensor in CP format represents a wavefunction constrained to be a sum of products (SOP). An SOP wavefunction can be made more accurate by increasing the number of terms, the rank. When the required rank is large, the runtime of a calculation in CP format is long, although the memory cost is small. To make the method more efficient, we break the full problem into pieces using a contraction tree. The required rank for each of the sub-problems is small. To demonstrate the effectiveness of the ideas, we computed vibrational energy levels of acetonitrile (12-D) and ethylene oxide (15-D).

2.
J Chem Phys ; 155(23): 234105, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34937358

RESUMEN

Present day computers do not have enough memory to store the high-dimensional tensors required when using a direct product basis to compute vibrational energy levels of a polyatomic molecule with more than about five atoms. One way to deal with this problem is to represent tensors using a tensor format. In this paper, we use the canonical polyadic (CP) format. Energy levels are computed by building a basis from vectors obtained by solving linear equations. The method can be thought of as a CP realization of a block inverse iteration method with multiple shifts. The CP rank of the tensors is fixed, and the linear equations are solved with an method. There is no need for rank reduction and no need for orthogonalization, and tensors with a rank larger than the fixed rank used to solve the linear equations are never generated. The ideas are tested by computing vibrational energy levels of a 64-D bilinearly coupled model Hamiltonian and of acetonitrile (12-D).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...