Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(23): 6635-6646, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38024290

RESUMEN

In the present work, a series of metal nanoparticle-decorated carbogels (M-DCs) was synthesized starting from beads of parent metal-crosslinked alginate aerogels (M-CAs). M-CAs contained Ca(ii), Ni(ii), Cu(ii), Pd(ii) and Pt(iv) ions and were converted to M-DCs by pyrolysis under a N2 atmosphere up to pyrolysis temperatures of TP = 600 °C. The textural properties of M-CAs are found to depend on the crosslinking ion, yielding fibrous pore networks with a high specific mesoporous volume and specific surface area SV (SV ∼ 480-687 m2 g-1) for M-CAs crosslinked with hard cations, Ca(ii), Ni(ii) and Cu(ii), and comparably loose networks with increased macroporosity and lower specific surface (SV ∼ 240-270 m2 g-1) for Pd(ii) and Pt(iv) crosslinked aerogels. The pyrolysis of M-CAs resulted in two simultaneously occurring processes: changes in the solid backbone and the growth of metal/metal oxide nanoparticles (NPs). The thermogravimetric analysis (TGA) showed a significant influence of the crosslinking cation on the decomposition mechanism and associated change in textural properties. Scanning electron microscopy-backscattered electron imaging (SEM-BSE) and X-ray diffraction revealed that metal ions (molecularly dispersed in the parent aerogels) formed nanoparticles composed of elementary metals and metal oxides in varying ratios over the course of pyrolytic treatment. Increasing the TP led to generally larger nanoparticles. The pyrolysis of the nickel-crosslinked aerogel (Ni-CA) preserved, to a large extent, the mesoporous structure and resulted in the evolution of fine (∼14 nm) homogeneously dispersed Ni/NiO nanoparticles. Overall, this work presents a green approach for synthesizing metal-nanoparticle containing carbon materials, useful in emerging technologies related to heterogeneous catalysis and electrocatalysis, among others.

2.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269957

RESUMEN

Mesoporous silica aerogels have a wide range of potential applications in biotechnology, the food industry, pharmacy and medicine. Understanding the nature of the interactions of biomolecules with these porous nanostructured materials is essential for achieving optimum performance in the targeted applications. In this study, the well-characterized bovine serum albumin (BSA) was chosen as a model protein to probe protein-aerogel interactions in the solution phase. Aqueous BSA was mixed with suspended silica aerogel microparticles, and the colloid system was monitored on-line by UV-vis spectrophotometry and turbidimetry. The global mathematical analysis of the time-resolved data reveals that the fast sorption of the protein on the aerogel microparticles follows a multistep binding mechanism. The extensive sorption of the protein eventually induces the aggregation of the covered aerogel due to the alteration of the electrical double layer of the particles. The interaction of BSA and silica aerogel is the strongest between pH = 4 and 5, because their native surface charges are the opposite in this pH range, as indicated by their respective zeta potentials.


Asunto(s)
Albúmina Sérica Bovina , Dióxido de Silicio , Coloides , Porosidad , Albúmina Sérica Bovina/química , Dióxido de Silicio/química
3.
J Chem Inf Model ; 62(1): 49-70, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34936761

RESUMEN

The gelation of biopolymers is of great interest in the material science community and has gained increasing relevance in the past few decades, especially in the context of aerogels─lightweight open nanoporous materials. Understanding the underlying gel structure and influence of process parameters is of great importance to predict material properties such as mechanical strength. In order to improve understanding of the gelation mechanism in aqueous solution, this work presents a novel approach based on the discrete element method for the mesoscale for modeling gelation of hydrogels, similarly to an extremely coarse-grained molecular dynamics (MD) approach. For this, polymer chains are abstracted as dimer units connected by flexible bonds and interactions between units and with the environment, that is, diffusion in implicit water, are described. The model is based on Langevin dynamics and includes an implicit probabilistic ion model to capture the effects of ion availability during ion-mediated gelation. The model components are fully derived and parameterized using literature data and theoretical considerations based on a simplified representation of atomistic processes. The presented model enables investigations of the higher-scale network formation during gelation on the micrometer and millisecond scale, which are beyond classical modeling approaches such as MD. As a model system, calcium-mediated alginate gelation is investigated including the influence of ion concentration, polymer composition, polymer concentration, and molecular weight. The model is verified against numerous literature data as well as own experimental results for the corresponding Ca-alginate hydrogels using nitrogen porosimetry, NMR cryoporometry, and small-angle neutron scattering. The model reproduces both bundle size and pore size distribution in a reasonable agreement with the experiments. Overall, the modeling approach paves the way to physically motivated design of alginate gels.


Asunto(s)
Alginatos , Polímeros , Alginatos/química , Biopolímeros , Difusión , Geles/química , Polímeros/química
4.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502104

RESUMEN

In this work, a multi-analytical approach involving nitrogen porosimetry, small angle neutron and X-ray scattering, Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, X-ray diffraction, thermal analysis and electron microscopy was applied to organically modified silica-based xerogels obtained through the sol-gel process. Starting from a tetraethoxysilane (TEOS) precursor, methyltriethoxysilane (MTES) was added to the reaction mixture at two different pH values (2.0 and 4.5) producing hybrid xerogels with different TEOS/MTES molar ratios. Significant differences in the structure were revealed in terms of the chemical composition of the silica network, hydrophilic/hydrophobic profile, particle dimension, pore shape/size and surface characteristics. The combined use of structural characterization methods allowed us to reveal a relation between the cavity dimensions, the synthesis pH value and the grade of methyl substitution. The effect of the structural properties on the controlled Captopril release efficiency has also been tested. This knowledge facilitates tailoring the pore network for specific usage in biological/medical applications. Knowledge on structural aspects, as reported in this work, represents a key starting point for the production of high-performance silica-based hybrid materials showing enhanced efficacy compared to bare silica prepared using only TEOS.


Asunto(s)
Liberación de Fármacos , Nanocápsulas/química , Gel de Sílice/síntesis química , Captopril/administración & dosificación , Captopril/química , Microscopía Electrónica , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
5.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575919

RESUMEN

Mesoporous aerogel microparticles are promising drug delivery systems. However, their in vivo biodistribution pathways and health effects are unknown. Suspensions of fluorescein-labeled silica-gelatin hybrid aerogel microparticles were injected into the peritoneum (abdominal cavity) of healthy mice in concentrations of 52 and 104 mg kg-1 in a 3-week-long acute toxicity experiment. No physiological dysfunctions were detected, and all mice were healthy. An autopsy revealed that the aerogel microparticles were not present at the site of injection in the abdominal cavity at the end of the experiment. The histological study of the liver, spleen, kidneys, thymus and lymphatic tissues showed no signs of toxicity. The localization of the aerogel microparticles in the organs was studied by fluorescence microscopy. Aerogel microparticles were not detected in any of the abdominal organs, but they were clearly visible in the cortical part of the parathymic lymph nodes, where they accumulated. The accumulation of aerogel microparticles in parathymic lymph nodes in combination with their absence in the reticuloendothelial system organs, such as the liver or spleen, suggests that the microparticles entered the lymphatic circulation. This biodistribution pathway could be exploited to design passive targeting drug delivery systems for flooding metastatic pathways of abdominal cancers that spread via the lymphatic circulation.


Asunto(s)
Cavidad Abdominal/patología , Materiales Biocompatibles/química , Portadores de Fármacos/química , Geles/química , Ganglios Linfáticos/patología , Animales , Materiales Biocompatibles/administración & dosificación , Portadores de Fármacos/administración & dosificación , Sistemas de Liberación de Medicamentos , Técnica del Anticuerpo Fluorescente , Gelatina , Inmunohistoquímica , Ganglios Linfáticos/metabolismo , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Dióxido de Silicio , Distribución Tisular
6.
Polymers (Basel) ; 13(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669181

RESUMEN

The imaging of non-conducting materials by scanning electron microscopy (SEM) is most often performed after depositing few nanometers thick conductive layers on the samples. It is shown in this work, that even a 5 nm thick sputtered gold layer can dramatically alter the morphology and the surface structure of many different types of aerogels. Silica, polyimide, polyamide, calcium-alginate and cellulose aerogels were imaged in their pristine forms and after gold sputtering utilizing low voltage scanning electron microscopy (LVSEM) in order to reduce charging effects. The morphological features seen in the SEM images of the pristine samples are in excellent agreement with the structural parameters of the aerogels measured by nitrogen adsorption-desorption porosimetry. In contrast, the morphologies of the sputter coated samples are significantly distorted and feature nanostructured gold. These findings point out that extra care should be taken in order to ensure that gold sputtering does not cause morphological artifacts. Otherwise, the application of low voltage scanning electron microscopy even yields high resolution images of pristine non-conducting aerogels.

7.
Chemosphere ; 275: 130019, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33676274

RESUMEN

Silica-gelatin hybrid aerogel of 24 wt% gelatin content is an advanced functional material suitable for the high performance selective adsorption of aqueous Hg(II). The remediation efficacy of this adsorbent was tested under realistic aquatic conditions by exposing cultures of Paramecium caudatum to Hg(II) and monitoring the model cultures by time-lapse video microscopy. The viability of Paramecium was quantified by analyzing the pixel differences of the sequential images caused by the persistent movement (motility) of the cells. The viability of Paramecium displays a clear exposure-response relationship with Hg(II) concentration. Viability decreases with increasing Hg(II) concentration when the latter is higher than 125 µg L-1. In the presence of 0.1 mg mL-1 aerogel adsorbent, the viability of the cells decreases only at Hg(II) concentrations higher than 500 µg L-1, and 220 min survival time was measured even at 1000 µg L-1 Hg(II). The effective toxicity of Hg(II) is lower in the presence of the aerogel, because the equilibrium concentration of aqueous Hg(II) is low due to adsorption, thus Paramecium cells do not uptake as much Hg(II) as in the un-remediated cultures. Video imaging of Paramecium cultures offers a simple, robust and flexible method for providing quantitative information on the effectiveness of advanced materials used in adsorption processes for water treatment.


Asunto(s)
Mercurio , Paramecium caudatum , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cinética , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
J Control Release ; 332: 40-63, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33600880

RESUMEN

Aerogels are the lightest processed solid materials on Earth and with the largest empty volume fraction in their structure. Composition versatility, modularity, and feasibility of industrial scale manufacturing are behind the fast emergence of aerogels in the drug delivery field. Compared to other 3D materials, the high porosity (interconnected mesopores) and high specific surface area of aerogels may allow faster loading of small-molecule drugs, less constrained access to inner regions of the matrix, and more efficient interactions of the biological milieu with the polymer matrix. Processing in supercritical CO2 medium for both aerogel production (drying) and drug loading (impregnation) has remarkable advantages such as absence of an oxidizing environment, clean manufacture, and easiness for the scale-up under good manufacturing practices. The aerogel solid skeleton dictates the chemical affinity to the different drugs, which in turn determines the loading efficiency and the release pattern. Aerogels can be used to increase the solubility of BCS Class II and IV drugs because the drug can be deposited in amorphous state onto the large surface area of the skeleton, which facilitates a rapid contact with the body fluids, dissolution, and release. Conversely, tuning the aerogel structure by functionalization with drug-binding moieties or stimuli-responsive components, application of coatings and incorporation of drug-loaded aerogels into other matrices may enable site-specific, stimuli-responsive, or prolonged drug release. The present review deals with last decade advances in aerogels for drug delivery. An special focus is paid first on the loading efficiency of active ingredients and release kinetics under biorelevant conditions. Subsequent sections deal with aerogels intended to address specific therapeutic demands. In addition to oral delivery, the physical properties of the aerogels appear to be very advantageous for mucosal administration routes, such as pulmonary, nasal, or transdermal. A specific section devoted to recent achievements in gene therapy and theranostics is also included. In the last section, scale up strategies and life cycle assessment are comprehensively addressed.


Asunto(s)
Desecación , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Geles , Solubilidad
9.
ACS Appl Mater Interfaces ; 13(2): 2997-3010, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33401895

RESUMEN

The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.

10.
Nanomaterials (Basel) ; 10(6)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503247

RESUMEN

Porous gold nanoparticles (PGNs) are usually prepared in an immobilized form on a solid substrate, which is not practical in many applications. In this work, a simple method is reported for the preparation and stabilization of mesoporous gold particles of a few hundred nanometers in size in aqueous suspension. Nanoparticles of Ag-Au alloy were fabricated on CaF 2 and Si/SiO 2 substrates by the solid-state dewetting method. Silver was selectively dissolved (dealloyed), and the resulting porous gold nanoparticles were chemically removed from the substrate either in a concerted step with dealloying, or in a subsequent step. Nitric acid was used for the one-step dealloying and detachment of the particles from CaF 2 substrate. The consecutive use of HNO 3 and HF resulted in the dealloying and the subsequent detachment of the particles from Si/SiO 2 substrate. The PGNs were recovered from the aqueous suspensions by centrifugation. The Au content of the suspensions was monitored by using elemental analysis (ICP-OES), and recovery was optimized. The morphology and the optical characteristics of the support-free PGNs were analyzed by scanning electron microscopy (SEM), dynamic light scattering spectroscopy (DLS), and near-infrared spectrophotometry (NIR). The obtained PGNs are spherical disk-shaped with a mean particle size of 765 ± 149 nm. The suspended, support-free PGNs display an ideally narrow dipole plasmon peak at around 1450 nm in the NIR spectral region. Thus, the new colloidal PGNs are ideal candidates for biomedical applications, for instance photothermal therapy.

11.
Acta Biomater ; 105: 131-145, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31953196

RESUMEN

Silica-gelatin hybrid aerogels of varying gelatin content (from 4 wt.% to 24 wt.%) can be conveniently impregnated with hydrophobic active agents (e.g. ibuprofen, ketoprofen) in supercritical CO2 and used as drug delivery systems. Contrast variation neutron scattering (SANS) experiments show the molecular level hybridization of the silica and the gelatin components of the aerogel carriers. The active agents are amorphous, and homogeneously dispersed in these porous, hybrid matrices. Importantly, both fast and retarded drug release can be achieved with silica-gelatin hybrid aerogels, and the kinetics of drug release is governed by the gelatin content of the carrier. In this paper, for the first time, a molecular level explanation is given for the strong correlation between the composition and the functionality of a family of aerogel based drug delivery systems. Characterization of the wet aerogels by SANS and by NMR diffusiometry, cryoporometry and relaxometry revealed that the different hydration mechanisms of the aerogels are responsible for the broad spectrum of release kinetics. Low-gelatin (4-11 wt.%) aerogels retain their open-porous structure in water, thus rapid matrix erosion dictates fast drug release from these carriers. In contrast to this, wet aerogels of high gelatin content (18-24 wt.%) show well pronounced hydrogel-like characteristics, and a wide gradual transition zone forms in the solid-liquid interface. The extensive swelling of the high-gelatin hybrid backbone results in the collapse of the open porous structure, that limits mass transport towards the release medium, resulting in slower, diffusion controlled drug release. STATEMENT OF SIGNIFICANCE: Developing new drug delivery systems is a key aspect of pharmaceutical research. Supercritically dried mesoporous aerogels are ideal carriers for small molecular weight drugs due to their open porous structures and large specific surface areas. Hybrid silica-gelatin aerogels can display both fast and retarded drug release properties based on the gelatin contents of their backbones. The structural characterization of the aerogels by SANS and by NMR diffusiometry, cryoporometry and relaxometry revealed that the different hydration mechanisms of the hybrid backbones are responsible for the broad spectrum of release kinetics. The molecular level understanding of the functionality of these hybrid inorganic-biopolymer drug delivery systems facilitates the realization of quality-by-design in this research field.


Asunto(s)
Sistemas de Liberación de Medicamentos , Gelatina/química , Geles/química , Dióxido de Silicio/química , Agua/química , Adsorción , Difusión , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Difracción de Neutrones , Nitrógeno/química , Tamaño de la Partícula , Porosidad , Electricidad Estática
12.
Inorg Chem ; 58(21): 14467-14477, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31613608

RESUMEN

The physicochemical properties of rare-earth zirconates can be tuned by the rational modification of their structures and phase compositions. In the present work, La3+-, Nd3+-, Gd3+-, and Dy3+-zirconate nanostructured materials were prepared by different synthetic protocols, leading to powders, xerogels, and, for the first time, monolithic aerogels. Powders were synthesized by the co-precipitation method, while xerogels and aerogels were synthesized by the sol-gel technique, followed by ambient and supercritical drying, respectively. Their microstructures, thermogravimetric profiles, textural properties, and crystallographic structures are reported. The co-precipitation method led to dense powders (SBET < 1 m2 g-1), while the sol-gel technique resulted in large surface area xerogels (SBET = 144 m2 g-1) and aerogels (SBET = 168 m2 g-1). In addition, the incorporation of lanthanide ions into the zirconia lattice altered the crystal structures of the powders, xerogels, and aerogels. Single-phase pyrochlores were obtained for La2Zr2O7 and Nd2Zr2O7 powders and xerogels, while defect fluorite structures formed in the case of Gd2Zr2O7 and Dy2Zr2O7. All aerogels contain a mixture of cubic and tetragonal ZrO2 phases. Thus, a direct effect is shown between the drying conditions and the resulting crystalline phases of the nanostructured rare-earth zirconates.

13.
Int J Pharm ; 558: 396-403, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30664996

RESUMEN

Methotrexate functionalized silica-gelatin hybrid aerogel (SGM) was synthesized by the sol-gel method and co-gelation. The drug methotrexate (MTX) is covalently linked to the collagen molecules of the hybrid aerogel backbone by amide-bond. The characteristic MTX content of the functionalized hybrid aerogel is ca. 6 wt% by the dry weight. The micronization of SGM aerogel in water yields cell sized (d = 10-20 µm) particles. The cytotoxicity of these microparticles against tumor cell lines (SCC VII and HL-60) is unprecedentedly high, it is approximately equivalent to that of an equal dose of free (dissolved) MTX, as proved by in vitro experiments. Thus, the activity of MTX is intact after aerogel functionalization, and the mass specific cytotoxicity of SGM is high enough for medical applications. Drug release studies verified that MTX cannot be liberated from this drug delivery system solely by chemical hydrolysis, however, collagenase enzymatic activity releases MTX from the functionalized hybrid aerogel. The cytotoxicity of SGM towards various cancerous and non-cancerous cell lines correlates with the collagenase activities of cells. Therefore, conjugation with the hybrid aerogel provides a controlled release system for the antineoplastic agent MTX. The morphology of the delivery vehicle was chosen to adapt the size of cancer cells; thus the metastatic pathways of the tumor cells can get flooded.


Asunto(s)
Antineoplásicos/administración & dosificación , Gelatina/administración & dosificación , Metotrexato/administración & dosificación , Dióxido de Silicio/administración & dosificación , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Colagenasas/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Gelatina/química , Geles , Humanos , Metotrexato/química , Neoplasias/tratamiento farmacológico , Dióxido de Silicio/química
14.
Drug Discov Today Technol ; 27: 71-80, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30103866

RESUMEN

In this current article matrix formulations for oral drug delivery are reviewed. Conventional dosage forms and novel applications such as 3D printed matrices and aerogel matrices are discussed. Beside characterization, excipients and matrix forming agents are also enlisted and classified. The incorporated drug could exist in crystalline or in amorphous forms, which makes drug dissolution easily tunable. Main drug release mechanisms are detailed and reviewed to support rational design in pharmaceutical technology and manufacturing considering the fact that R&D members of the industry are forced to obtain knowledge about excipients and methods pros and cons. As innovative and promising research fields of drug delivery, 3D printed products and highly porous, low density aerogels with high specific surface area are spreading, currently limitlessly. These compositions can also be considered as matrix formulations.


Asunto(s)
Formas de Dosificación , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Preparaciones Farmacéuticas/administración & dosificación , Administración Oral , Preparaciones Farmacéuticas/química , Porosidad
15.
Carbohydr Polym ; 188: 159-167, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29525152

RESUMEN

Iron(III)-crosslinked alginate aerogel beads (d = 3-5 mm) were prepared and loaded with ibuprofen by using the technique of adsorptive deposition from supercritical CO2. Additional formulations were prepared where the aerogels were co-impregnated by ibuprofen and ascorbic acid. The release of ibuprofen from the Fe(III)-alginate is much faster in pH = 7.4 (PBS) than in pH = 2.0 (HCl), which can be explained by the faster dissolution and higher swelling of the alginate matrix in PBS. By decreasing the size of the beads and using a higher G content alginate the release rate could be slightly increased. A marked acceleration of drug release was achieved in both HCl and PBS by incorporating ascorbic acid into the Fe(III)-alginate aerogel preparations. The explanation is that in aqueous media ascorbic acid in situ reduces the crosslinking Fe(III) to Fe(II). The latter does not interact strongly with alginate, which promotes the hydration of the chains, thus the erosion and dissolution of the carrier matrix.


Asunto(s)
Alginatos/química , Portadores de Fármacos/química , Compuestos Férricos/química , Sistemas de Liberación de Medicamentos/métodos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción
16.
Dalton Trans ; 47(11): 3831-3840, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29450423

RESUMEN

An important reaction step in the industrial production of NaClO3 (electrochemical chlorate process) is the thermal decomposition of HOCl/OCl- to yield ClO3- and Cl-. It is widely accepted that this reaction is accelerated by aqueous chromium(vi) species. A detailed kinetic study was conducted under industrially relevant conditions, i.e. at high ionic strength (6.0 M) and elevated temperature (80 °C), to investigate this phenomenon. The decomposition of hypochlorous acid was followed in the presence of Cr(vi) or phosphate (PO43-) or without any additive. In addition to the beneficial pH buffering effect of Cr(vi), the CrO42- form of chromium(vi) was found to slightly catalyze the decomposition of hypochlorous acid. The overall rate of HOCl decomposition can be expressed as -dcHOCl/dt = kdec[HOCl]2[OCl-] + kcat[HOCl]2[CrO42-]. The corresponding rate constants were determined, kdec = 9.4 ± 0.1 M-2 s-1 and kcat = 4.6 ± 0.8 M-2 s-1, and mechanistic interpretation of the catalytic rate law is given. The contribution of the catalytic path to the overall rate of decomposition changes from ca. 30% at pH = 8 to ca. 70% at pH = 6.

17.
Colloids Surf B Biointerfaces ; 152: 229-237, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28113125

RESUMEN

Specific features of a silica-gelatin aerogel (3 wt.% gelatin content) in relation to drug delivery has been studied. It was confirmed that the release of both ibuprofen (IBU) and ketoprofen (KET) is about tenfold faster from loaded silica-gelatin aerogel than from pure silica aerogel, although the two matrices are structurally very similar. The main goal of the study was to understand the mechanistic background of the striking difference between the delivery properties of these closely related porous materials. Hydrated and dispersed silica-gelatin aerogel has been characterized by NMR cryoporometry, diffusiometry and relaxometry. The pore structure of the silica aerogel remains intact when it disintegrates in water. In contrast, dispersed silica-gelatin aerogel develops a strong hydration sphere, which reshapes the pore walls and deforms the pore structure. The drug release kinetics was studied on a few minutes time scale with 1s time resolution. Simultaneous evaluation of all relevant kinetic and structural information confirmed that strong hydration of the silica-gelatin skeleton facilitates the rapid desorption and dissolution of the drugs from the loaded aerogel. Such a driving force is not operative in pure silica aerogels.


Asunto(s)
Portadores de Fármacos/química , Gelatina/química , Dióxido de Silicio/química , Cinética , Espectroscopía de Resonancia Magnética
18.
Photochem Photobiol Sci ; 15(4): 589-94, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26947352

RESUMEN

A versatile photoreactor was built for studying homogeneous and heterogeneous photochemical reactions using fiber-optic devices. The reactor was designed to allow simultaneous photochemical initiation and online spectrophotometric monitoring of the reaction using independently controlled excitation and detection lamps. The system consists of a CCD spectrophotometer, a thermostated sample holder, two light sources, and standard 1.00 × 1.00 cm (or possibly smaller) fluorescence cuvettes, all coupled with fiber optic cables. The device can be used as a photoreactor, a diode-array spectrophotometer and also as a spectrofluorimeter. The reactor can be used in flow-through operation modes. Performance tests of the instrument are reported here with a number of known photochemical systems.

19.
Dalton Trans ; 43(12): 4862-70, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24492347

RESUMEN

The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.

20.
Inorg Chem ; 52(4): 2150-6, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23363374

RESUMEN

The haloperoxidase-catalyzed in vivo oxidation of thiocyanate ion (SCN(-)) by H(2)O(2) is important for generation of the antimicrobial hypothiocyanite ion (OSCN(-)), which is also susceptible to oxidation by strong in vivo oxidizing agents (i.e., H(2)O(2), OCl(-), OBr(-)). We report a detailed mechanistic investigation on the multistep oxidation of excess SCN(-) with peroxomonosulfate ion (HSO(5)(-) in the form of Oxone) in the range from pH 6.5 to 13.5. OSCN(-) was detected to be the intermediate of this reaction under the above conditions, and a kinetic model is proposed. Furthermore, by kinetic separation of the consecutive reaction steps, the rate constant of the direct oxidation of OSCN(-) by HSO(5)(-) was determined: k(2) = (1.6 ± 0.1) × 10(2) M(-1) s(-1) at pH 13.5 and k(2)(H) = (3.3 ± 0.1) × 10(3) M(-1) s(-1) at pH 6.89. A critical evaluation of the estimated activation parameters of the elementary steps revealed that the oxidations of SCN(-) as well as the consecutive OSCN(-) by HSO(5)(-) are more likely to proceed via 2e(-)-transfer steps rather than 1e(-) transfer.


Asunto(s)
Peróxidos/química , Tiocianatos/química , Tiocianatos/síntesis química , Iones/química , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...