Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 130(3): 617-626, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33357007

RESUMEN

In this study, we examined the effect of ß2-agonist salbutamol at oral doses during a period of resistance training on sprint performance, quadriceps contractile function, skeletal muscle hypertrophy, fiber type composition, maximal activity of enzymes of importance for anaerobic energy turnover, and sarcoplasmic reticulum Ca2+ handling in young men. Twenty-six men (23 ± 2 yr; means ± SD) were randomized to daily intake of oral salbutamol (16 mg/day; RES+SAL) or placebo (RES) during 11 wk of full-body resistance training 3 times/wk. Mean power output during 10-s maximal cycling increased more (P = 0.027) in RES+SAL (+12%) than in RES (+7%), whereas peak power output increased similarly (RES+SAL: +8%; RES: +7%; P = 0.400). Quadriceps dynamic peak torque and maximal voluntary isometric torque increased by 13 and 14% (P ≤ 0.001) in RES+SAL and 13 and 13% (P ≤ 0.001) in RES, respectively. Myosin heavy-chain (MHC) isoform distribution transitioned from MHCI and MHCIIx toward MHCIIa in RES+SAL (P = 0.002), but not in RES (P = 0.323). MHCIIa cross-sectional-area increased more (P = 0.040) in RES+SAL (+35%) than RES (+21%). Sarcoplasmic reticulum Ca2+ release rate increased in both groups (RES+SAL: +9%, P = 0.048; RES: +13%, P = 0.008), whereas Ca2+-uptake rate increased only in RES (+12%, P = 0.022) but was not different from the nonsignificant change in RES+SAL (+2%, P = 0.484). Maximal activity of lactate dehydrogenase increased only in RES+SAL (+13%, P = 0.008). Muscle content of the dihydropyridine receptor, ryanodine receptor 1, and sarcoplasmic reticulum Ca2+-ATPase isoform 1 and 2 did not change with the intervention in either group (P ≥ 0.100). These observations indicate that the enhancement of sprint mean power output induced by salbutamol is at least partly attributed to greater hypertrophy of MHCIIa fibers and transition toward the MHCIIa isoform.NEW & NOTEWORTHY Here, we show that daily oral treatment with selective ß2-agonist salbutamol induces muscle fiber isoform transition from myosin-heavy-chain (MHC)-I toward MHCIIa and augments hypertrophy of MHCIIa fibers during a period of resistance training. Compared with placebo, salbutamol enhanced sprint mean power output, whereas peak power output and measures of muscle strength increased similarly during the resistance training period despite augmented hypertrophy with salbutamol. Thus, salbutamol is a muscle anabolic drug that can enhance sprint ability adaptations to resistance training.


Asunto(s)
Entrenamiento de Fuerza , Agonistas Adrenérgicos , Adulto , Albuterol , Estudios Transversales , Humanos , Hipertrofia , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético , Adulto Joven
2.
J Physiol ; 596(17): 4121-4139, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29968301

RESUMEN

KEY POINTS: Animal models have shown that beta2 -adrenoceptor stimulation increases protein synthesis and attenuates breakdown processes in skeletal muscle. Thus, the beta2 -adrenoceptor is a potential target in the treatment of disuse-, disease- and age-related muscle atrophy. In the present study, we show that a few days of oral treatment with the commonly prescribed beta2 -adrenoceptor agonist, salbutamol, increased skeletal muscle protein synthesis and breakdown during the first 5 h after resistance exercise in young men. Salbutamol also counteracted a negative net protein balance in skeletal muscle after resistance exercise. Changes in protein turnover rates induced by salbutamol were associated with protein kinase A-signalling, activation of Akt2 and modulation of mRNA levels of growth-regulating proteins in skeletal muscle. These findings indicate that protein turnover rates can be augmented by beta2 -adrenoceptor agonist treatment during recovery from resistance exercise in humans. ABSTRACT: The effect of beta2 -adrenoceptor stimulation on skeletal muscle protein turnover and intracellular signalling is insufficiently explored in humans, particularly in association with exercise. In a randomized, placebo-controlled, cross-over study investigating 12 trained men, the effects of beta2 -agonist (6 × 4 mg oral salbutamol) on protein turnover rates, intracellular signalling and mRNA response in skeletal muscle were investigated 0.5-5 h after quadriceps resistance exercise. Each trial was preceded by a 4-day lead-in treatment period. Leg protein turnover rates were assessed by infusion of [13 C6 ]-phenylalanine and sampling of arterial and venous blood, as well as vastus lateralis muscle biopsies 0.5 and 5 h after exercise. Furthermore, myofibrillar fractional synthesis rate, intracellular signalling and mRNA response were measured in muscle biopsies. The mean (95% confidence interval) myofibrillar fractional synthesis rate was higher for salbutamol than placebo [0.079 (95% CI, 0.064 to 0.093) vs. 0.066 (95% CI, 0.056 to 0.075%) × h-1 ] (P < 0.05). Mean net leg phenylalanine balance 0.5-5 h after exercise was higher for salbutamol than placebo [3.6 (95% CI, 1.0 to 6.2 nmol) × min-1  × 100 gLeg Lean Mass-1 ] (P < 0.01). Phosphorylation of Akt2, cAMP response element binding protein and PKA substrate 0.5 and 5 h after exercise, as well as phosphorylation of eEF2 5 h after exercise, was higher (P < 0.05) for salbutamol than placebo. Calpain-1, Forkhead box protein O1, myostatin and Smad3 mRNA content was higher (P < 0.01) for salbutamol than placebo 0.5 h after exercise, as well as Forkhead box protein O1 and myostatin mRNA content 5 h after exercise, whereas ActivinRIIB mRNA content was lower (P < 0.01) for salbutamol 5 h after exercise. These observations suggest that beta2 -agonist increases protein turnover rates in skeletal muscle after resistance exercise in humans, with concomitant cAMP/PKA and Akt2 signalling, as well as modulation of mRNA response of growth-regulating proteins.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Albuterol/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Proteolisis , Entrenamiento de Fuerza , Administración Oral , Adolescente , Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Adulto , Albuterol/administración & dosificación , Estudios Cruzados , Método Doble Ciego , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Transducción de Señal , Adulto Joven
3.
Eur J Appl Physiol ; 117(9): 1907-1915, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28702809

RESUMEN

PURPOSE: ß2-Agonists have been proposed as weight-loss treatment, because they elevate energy expenditure. However, it is unknown what effect ß2-agonists have on energy expenditure in overweight individuals. Furthermore, the influence of ß2-agonist R- and S-enantiomer ratio for the increased energy expenditure is insufficiently explored. METHODS: Nineteen males were included in the study of which 14 completed. Subjects were 31.6 (±3.5) years [mean (±95% CI)] and had a fat percentage of 22.7 (±2.1)%. On separate days, subjects received either placebo or inhaled racemic (rac-) formoterol (2 × 27 µg). After an overnight fast, energy expenditure and substrate oxidation were estimated by indirect calorimetry at rest and during submaximal exercise. Plasma (R,R)- and (S,S)-formoterol enantiomer levels were measured by ultra-performance liquid chromatograph-mass spectrometry. RESULTS: At rest, energy expenditure and fat oxidation were 12% (P ≤ 0.001) and 38% (P = 0.006) higher for rac-formoterol than placebo. Systemic (R,R):(S,S) formoterol ratio was correlated with change in energy expenditure at rest in response to rac-formoterol (r = 0.63, P = 0.028), whereas no association was observed between fat percentage and rac-formoterol-induced change in energy expenditure. During exercise, energy expenditure was not different between treatments, although carbohydrate oxidation was 15% higher (P = 0.021) for rac-formoterol than placebo. Rac-formoterol-induced shift in substrate choice from rest to exercise was related to plasma ln-rac-formoterol concentrations (r = 0.75, P = 0.005). CONCLUSION: Selective ß2-adrenoceptor agonism effectively increases metabolic rate and fat oxidation in overweight individuals. The potential for weight loss induced by ß2-agonists may be greater for R-enantiopure formulations.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Metabolismo Energético/efectos de los fármacos , Ejercicio Físico , Fumarato de Formoterol/farmacología , Sobrepeso/metabolismo , Adulto , Humanos , Metabolismo de los Lípidos , Masculino , Descanso
4.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1312-21, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27147617

RESUMEN

The aim was to investigate the effect of the long-acting ß2-adrenergic agonist formoterol on muscle strength and power output, muscle metabolism, and phosphorylation of CaMKII Thr(287) and FXYD1 during maximal sprinting. In a double-blind crossover study, 13 males [V̇o2 max: 45.0 ± 0.2 (means ± SE) ml·min(-1)·kg(-1)] performed a 30-s cycle ergometer sprint after inhalation of either 54 µg of formoterol (FOR) or placebo (PLA). Before and after the sprint, muscle biopsies were collected from vastus lateralis and maximal voluntary contraction (MVC), and contractile properties of quadriceps were measured. Oxygen uptake was measured during the sprint. During the sprint, peak power, mean power, and end power were 4.6 ± 0.8, 3.9 ± 1.1, and 9.5 ± 3.2% higher (P < 0.05) in FOR than in PLA, respectively. Net rates of glycogenolysis and glycolysis were 45.7 ± 21.0 and 28.5 ± 13.4% higher (P < 0.05) in FOR than in PLA, respectively, and the decrease in ATP content was lower (P < 0.05) in FOR than in PLA (3.7 ± 1.5 vs. 8.0 ± 1.6 mmol/kg dry weight). There was no difference in breakdown of phosphocreatine and oxygen uptake between treatments. Before and after the sprint, MVC and peak twitch force were higher (P < 0.05) in FOR than in PLA. No differences were observed in phosphorylation of CaMKII Thr(287) and FXYD1 between treatments before the sprint, whereas phosphorylation of CaMKII Thr(287) and FXYD1 was greater (P < 0.05) in FOR than in PLA after the sprint. In conclusion, formoterol-induced enhancement in power output during maximal sprinting is associated with increased rates of glycogenolysis and glycolysis that may counteract development of fatigue.


Asunto(s)
Fumarato de Formoterol/administración & dosificación , Fatiga Muscular/fisiología , Fuerza Muscular/fisiología , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Carrera/fisiología , Antagonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Adulto , Rendimiento Atlético/fisiología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Humanos , Masculino , Fatiga Muscular/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Consumo de Oxígeno/efectos de los fármacos , Sustancias para Mejorar el Rendimiento/administración & dosificación , Resistencia Física/efectos de los fármacos , Esfuerzo Físico/efectos de los fármacos , Esfuerzo Físico/fisiología
5.
Drug Test Anal ; 8(7): 613-20, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26044066

RESUMEN

The present study investigated the influence of exercise and dehydration on the urine concentrations of salbutamol after inhalation of that maximal permitted (1600 µg) on the 2015 World Anti-Doping Agency (WADA) prohibited list. Thirteen healthy males participated in the study. Urine concentrations of salbutamol were measured during three conditions: exercise (EX), exercise+dehydration (EXD), and rest (R). Exercise consisted of 75 min cycling at 60% of VO2max and a 20-km time-trial. Fluid intake was 2300, 270, and 1100 mL during EX, EXD, and R, respectively. Urine samples of salbutamol were collected 0-24 h after drug administration. Adjustment of urine concentrations of salbutamol to a specific gravity (USG) of 1.020 g/mL was compared with no adjustment. The 2015 WADA decision limit (1200 ng/mL) for salbutamol was exceeded in 23, 31, and 10% of the urine samples during EX, EXD, and R, respectively, when unadjusted for USG. When adjusted for USG, the corresponding percentages fell to 21, 15, and 8%. During EXD, mean urine concentrations of salbutamol exceeded (1325±599 ng/mL) the decision limit 4 h after administration when unadjusted for USG. Serum salbutamol Cmax was lower (P<0.01) for R(3.0±0.7 ng/mL) than EX(3.8±0.8 ng/mL) and EXD(3.6±0.8 ng/mL). AUC was lower for R (14.1±2.8 ng/mL·âˆ™h) than EX (16.9±2.9 ng/mL·âˆ™h)(P<0.01) and EXD (16.1±3.2 ng/mL·âˆ™h)(P<0.05). In conclusion, exercise and dehydration affect urine concentrations of salbutamol and increase the risk of Adverse Analytical Findings in samples collected after inhalation of that maximal permitted (1600 µg) for salbutamol. This should be taken into account when evaluating doping cases of salbutamol. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/orina , Albuterol/orina , Broncodilatadores/orina , Deshidratación/orina , Ejercicio Físico , Administración por Inhalación , Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Agonistas de Receptores Adrenérgicos beta 2/sangre , Adulto , Albuterol/administración & dosificación , Albuterol/sangre , Broncodilatadores/administración & dosificación , Broncodilatadores/sangre , Creatinina/sangre , Creatinina/orina , Deshidratación/sangre , Doping en los Deportes , Tasa de Filtración Glomerular , Humanos , Masculino , Descanso , Detección de Abuso de Sustancias/métodos
6.
Med Sci Sports Exerc ; 48(1): 39-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26197029

RESUMEN

PURPOSE: The aim of the present study was to investigate the effects of the beta2-agonist terbutaline (TER) on power output and muscle metabolism during maximal sprint cycling. METHODS: In a randomized double-blind cross-over design, nine moderately trained men (VO2max = 4.6 ± 0.2 L · min(-1)) conducted a 10-s cycle sprint after inhalation of either 15 mg of TER or placebo (PLA). A muscle biopsy sample was collected before and <10 s after the sprint and was analyzed for metabolites. RESULTS: The mean power and peak power during the sprint were 8.3% ± 1.1% and 7.8% ± 2.5% higher (P < 0.05) with TER than with PLA, respectively. Moreover, the net rates of glycogenolysis (6.5 ± 0.8 vs 3.1 ± 0.7 mmol glucosyl units · kg dry weight(-1) · s(-1)) and glycolysis (2.4 ± 0.2 vs 1.6 ± 0.2 mmol glucosyl units · kg dry weight(-1) · s(-1)) were higher (P < 0.05) with TER than with PLA. After the sprint, adenosine triphosphate (ATP) was reduced with PLA (P < 0.05) but not with TER. During the sprint, there was no difference in the breakdown of phosphocreatine (PCr) between treatments. Estimated anaerobic ATP utilization was 9.2% ± 4.0% higher (P < 0.05) with TER than with PLA. After the sprint, ATP in Type II fibers was lowered (P < 0.05) by 25.7% ± 7.3% with PLA but was not reduced with TER. Before the sprint, PCr in Type II fibers was 24.5% ± 7.2% lower (P < 0.05) with TER than with PLA. With PLA, breakdown of PCr was 50.2% ± 24.8% higher (P < 0.05) in Type II fibers (vs Type I fibers), whereas no difference was observed between fiber types with TER. CONCLUSION: The present study shows that a TER-induced increase in power output is associated with increased rates of glycogenolysis and glycolysis in skeletal muscles. Furthermore, as TER counteracts a reduction in ATP in Type II fibers, TER may postpone fatigue development in these fibers.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Ciclismo/fisiología , Glucólisis/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Terbutalina/farmacología , Adenosina Trifosfato/metabolismo , Estudios Cruzados , Método Doble Ciego , Metabolismo Energético , Humanos , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Intercambio Gaseoso Pulmonar , Adulto Joven
7.
J Appl Physiol (1985) ; 119(5): 475-86, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26159759

RESUMEN

The study was a randomized placebo-controlled trial investigating mechanisms by which chronic ß2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group [oral terbutaline 5 mg/30 kg body weight (bw) twice daily (TER); n = 9] or a control group [placebo (PLA); n = 9] for a 4-wk intervention. No changes were observed with the intervention in PLA. Isometric muscle force of the quadriceps increased (P ≤ 0.01) by 97 ± 29 N (means ± SE) with the intervention in TER compared with PLA. Peak and mean power output during 30 s of maximal cycling increased (P ≤ 0.01) by 32 ± 8 and 25 ± 9 W, respectively, with the intervention in TER compared with PLA. Maximal oxygen consumption (V̇o2max) and time to fatigue during incremental cycling did not change with the intervention. Lean body mass increased by 1.95 ± 0.8 kg (P ≤ 0.05) with the intervention in TER compared with PLA. Change in single fiber cross-sectional area of myosin heavy chain (MHC) I (1,205 ± 558 µm(2); P ≤ 0.01) and MHC II fibers (1,277 ± 595 µm(2); P ≤ 0.05) of the vastus lateralis muscle was higher for TER than PLA with the intervention, whereas no changes were observed in MHC isoform distribution. Expression of muscle proteins involved in growth, ion handling, lactate production, and clearance increased (P ≤ 0.05) with the intervention in TER compared with PLA, with no change in oxidative enzymes. Our observations suggest that muscle hypertrophy is the primary mechanism underlying enhancements in muscle force and peak power during maximal cycling induced by chronic ß2-adrenergic stimulation in humans.


Asunto(s)
Adrenérgicos/farmacología , Ciclismo/fisiología , Ejercicio Físico/fisiología , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Músculo Cuádriceps/efectos de los fármacos , Músculo Cuádriceps/fisiología , Adulto , Prueba de Esfuerzo/métodos , Humanos , Ácido Láctico/metabolismo , Masculino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Músculo Cuádriceps/metabolismo , Adulto Joven
8.
J Appl Physiol (1985) ; 117(10): 1180-7, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25257871

RESUMEN

In a randomized, double-blind crossover design, we investigated the effect of the beta2-agonist terbutaline (TER) on endurance performance and substrate utilization in nine moderately trained men [maximum oxygen uptake (V̇O(2 max)) 58.9 ± 3.1 ml·min(-1)·kg(-1)]. Subjects performed 60 min of submaximal exercise (65-70% of V̇O(2 max)) immediately followed by a 300-kcal time trial with inhalation of either 15 mg of TER or placebo (PLA). Pulmonary gas exchange was measured during the submaximal exercise, and muscle biopsies were collected before and after the exercise bouts. Time trial performance was not different between TER and PLA (1,072 ± 145 vs. 1,054 ± 125 s). During the submaximal exercise, respiratory exchange ratio, glycogen breakdown (TER 266 ± 32, PLA 195 ± 28 mmol/kg dw), and muscle lactate accumulation (TER 20.3 ± 1.6, PLA 13.2 ± 1.2 mmol/kg dw) were higher (P < 0.05) with TER than PLA. There was no difference between TER and PLA in net muscle glycogen utilization or lactate accumulation during the time trial. Intramyocellular triacylglycerol content did not change with treatment or exercise. Pyruvate dehydrogenase-E1α phosphorylation at Ser(293) and Ser(300) was lower (P < 0.05) before submaximal exercise with TER than PLA, with no difference after the submaximal exercise and the time trial. Before submaximal exercise, acetyl-CoA carboxylase 2 (ACC2) phosphorylation at Ser(221) was higher (P < 0.05) with TER than PLA. There was no difference in phosphorylation of alpha 5'-AMP-activated protein kinase (αAMPK) at Thr(172) between treatments. The present study suggests that beta2-agonists do not enhance 300-kcal time trial performance, but they increase carbohydrate metabolism in skeletal muscles during submaximal exercise independent of AMPK and ACC phosphorylation, and that this effect diminishes as drug exposure time, exercise duration, and intensity are increased.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Contracción Muscular , Músculo Esquelético/efectos de los fármacos , Resistencia Física , Terbutalina/administración & dosificación , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Administración por Inhalación , Adulto , Glucemia/metabolismo , Estudios Cruzados , Método Doble Ciego , Prueba de Esfuerzo , Glucógeno/metabolismo , Humanos , Ácido Láctico/sangre , Masculino , Músculo Esquelético/metabolismo , Fosforilación , Respiración/efectos de los fármacos , Análisis y Desempeño de Tareas , Factores de Tiempo , Adulto Joven
9.
Eur J Appl Physiol ; 114(12): 2499-508, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25113095

RESUMEN

PURPOSE: The purpose of the present study was to investigate the effect of high-dose inhaled terbutaline on muscle strength, maximal sprinting, and time-trial performance in trained men. METHODS: Nine non-asthmatic males with a VSO2max of 58.9 ± 3.1 ml min(-1) kg(-1) (mean ± SEM) participated in a double-blinded randomized crossover study. After administration of inhaled terbutaline (30 × 0.5 mg) or placebo, subjects' maximal voluntary isometric contraction (MVC) of m.quadriceps was measured. After MVC, subjects performed a 30-s Wingate test. Sixty minutes following the Wingate test, subjects exercised for 10 min at 80% of VSO2max and completed a 100-kcal time trial. Aerobic contribution was determined during the Wingate test by indirect calorimetry. Furthermore, plasma terbutaline, lactate, glucose, and K(+) were measured. RESULTS: Inhalation of 15 mg terbutaline resulted in systemic concentrations of terbutaline of 23.6 ± 1.1 ng ml(-1) 30 min after administration, and elevated plasma lactate (P = 0.001) and glucose (P = 0.007). MVC was higher for terbutaline than placebo (738 ± 64 vs. 681 ± 68 N) (P = 0.007). In addition, Wingate peak power and mean power were 2.2 ± 0.8 (P = 0.019) and 3.3 ± 1.0% (P = 0.009) higher for terbutaline than placebo. Net accumulation of plasma lactate was higher (P = 0.003) for terbutaline than placebo during the Wingate test, whereas [Formula: see text] above baseline was unchanged by terbutaline (P = 0.882). Time-trial performance was not different between treatments (P = 0.236). CONCLUSION: High-dose inhaled terbutaline elicits a systemic response that enhances muscle strength and sprint performance. High-dose terbutaline should therefore continue to be restricted in competitive sport.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Rendimiento Atlético , Fuerza Muscular/efectos de los fármacos , Terbutalina/administración & dosificación , Adulto , Estudios Cruzados , Método Doble Ciego , Humanos , Masculino , Resultado del Tratamiento , Adulto Joven
10.
Drug Test Anal ; 6(6): 528-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24166762

RESUMEN

Our objective was to investigate urine concentrations of 8 mg oral salbutamol in samples collected after intense exercise in endurance athletes. Nine male endurance athletes with a VO2max of 70.2 ± 5.9 mL/min/kg (mean ± SD) took part in the study. Two hours after administration of 8 mg oral salbutamol, subjects performed submaximal exercise for 15 min followed by two, 2-min exercise bouts at an intensity corresponding to 110% of VO2max and a bout to exhaustion at same intensity. Urine samples were collected 4, 8, and 12 h following administration of salbutamol. Samples were analyzed by the Norwegian World Anti-doping Agency (WADA) laboratory. Adjustment of urine concentrations of salbutamol to a urine specific gravity (USG) of 1.020 g/mL was compared with no adjustment according to WADA's technical documents. We observed greater (P = 0.01) urine concentrations of salbutamol 4 h after administration when samples were adjusted to a USG of 1.020 g/mL compared with no adjustment (3089 ± 911 vs. 1918 ± 1081 ng/mL). With the current urine decision limit of 1200 ng/mL for salbutamol on WADA's 2013 list of prohibited substances, fewer false negative urine samples were observed when adjusted to a USG of 1.020 g/mL compared with no adjustment. In conclusion, adjustment of urine samples to a USG of 1.020 g/mL decreases risk of false negative doping tests after administration of oral salbutamol. Adjusting urine samples for USG might be useful when evaluating urine concentrations of salbutamol in doping cases.


Asunto(s)
Albuterol/orina , Broncodilatadores/orina , Doping en los Deportes , Detección de Abuso de Sustancias/métodos , Administración Oral , Adulto , Albuterol/administración & dosificación , Atletas , Broncodilatadores/administración & dosificación , Prueba de Esfuerzo , Reacciones Falso Negativas , Humanos , Masculino , Consumo de Oxígeno , Resistencia Física/fisiología , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...