Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 25(23): 2489-501, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22156209

RESUMEN

The cell cycle-regulated expression of core histone genes is required for DNA replication and proper cell cycle progression in eukaryotic cells. Although some factors involved in histone gene transcription are known, the molecular mechanisms that ensure proper induction of histone gene expression during S phase remain enigmatic. Here we demonstrate that S-phase transcription of the model histone gene HTA1 in yeast is regulated by a novel attach-release mechanism involving phosphorylation of the conserved chromatin boundary protein Yta7 by both cyclin-dependent kinase 1 (Cdk1) and casein kinase 2 (CK2). Outside S phase, integrity of the AAA-ATPase domain is required for Yta7 boundary function, as defined by correct positioning of the histone chaperone Rtt106 and the chromatin remodeling complex RSC. Conversely, in S phase, Yta7 is hyperphosphorylated, causing its release from HTA1 chromatin and productive transcription. Most importantly, abrogation of Yta7 phosphorylation results in constitutive attachment of Yta7 to HTA1 chromatin, preventing efficient transcription post-recruitment of RNA polymerase II (RNAPII). Our study identified the chromatin boundary protein Yta7 as a key regulator that links S-phase kinases with RNAPII function at cell cycle-regulated histone gene promoters.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas Cromosómicas no Histona/genética , Histonas/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
PLoS Biol ; 7(9): e1000188, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19823668

RESUMEN

START-dependent transcription in Saccharomyces cerevisiae is regulated by two transcription factors SBF and MBF, whose activity is controlled by the binding of the repressor Whi5. Phosphorylation and removal of Whi5 by the cyclin-dependent kinase (CDK) Cln3-Cdc28 alleviates the Whi5-dependent repression on SBF and MBF, initiating entry into a new cell cycle. This Whi5-SBF/MBF transcriptional circuit is analogous to the regulatory pathway in mammalian cells that features the E2F family of G1 transcription factors and the retinoblastoma tumor suppressor protein (Rb). Here we describe genetic and biochemical evidence for the involvement of another CDK, Pcl-Pho85, in regulating G1 transcription, via phosphorylation and inhibition of Whi5. We show that a strain deleted for both PHO85 and CLN3 has a slow growth phenotype, a G1 delay, and is severely compromised for SBF-dependent reporter gene expression, yet all of these defects are alleviated by deletion of WHI5. Our biochemical and genetic tests suggest Whi5 mediates repression in part through interaction with two histone deacetylases (HDACs), Hos3 and Rpd3. In a manner analogous to cyclin D/CDK4/6, which phosphorylates Rb in mammalian cells disrupting its association with HDACs, phosphorylation by the early G1 CDKs Cln3-Cdc28 and Pcl9-Pho85 inhibits association of Whi5 with the HDACs. Contributions from multiple CDKs may provide the precision and accuracy necessary to activate G1 transcription when both internal and external cues are optimal.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Fase G1/fisiología , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Fase G1/efectos de los fármacos , Factores de Transcripción/metabolismo
3.
Mol Cell ; 33(1): 53-63, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19150427

RESUMEN

Triacylglycerols (TGs) serve essential cellular functions as reservoirs for energy substrates (fatty acids) and membrane lipid precursors (diacylglycerols and fatty acids). Here we show that the major yeast TG lipase Tgl4, the functional ortholog of murine adipose TG lipase ATGL, is phosphorylated and activated by cyclin-dependent kinase 1 (Cdk1/Cdc28). Phospho-Tgl4-catalyzed lipolysis contributes to early bud formation in late G1 phase of the cell cycle. Conversely, lack of lipolysis delays bud formation and cell-cycle progression. In the absence of beta-oxidation, lipolysis-derived metabolites are thus required to support cellular growth. TG homeostasis is the only metabolic process identified as yet that is directly regulated by Cdk1/Cdc28-dependent phosphorylation of key anabolic and catabolic enzymes, highlighting the importance of FA storage and mobilization during the cell cycle. Our data provide evidence for a direct link between cell-cycle-regulatory kinases and TG degradation and suggest a general mechanism for coordinating membrane synthesis with cell-cycle progression.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Lipasa/metabolismo , Lipólisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Activación Enzimática , Ácidos Grasos/biosíntesis , Fase G1 , Homeostasis , Lipasa/química , Lípidos , Datos de Secuencia Molecular , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...