Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JMIR Infodemiology ; 3: e44207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37012998

RESUMEN

Background: An infodemic is excess information, including false or misleading information, that spreads in digital and physical environments during a public health emergency. The COVID-19 pandemic has been accompanied by an unprecedented global infodemic that has led to confusion about the benefits of medical and public health interventions, with substantial impact on risk-taking and health-seeking behaviors, eroding trust in health authorities and compromising the effectiveness of public health responses and policies. Standardized measures are needed to quantify the harmful impacts of the infodemic in a systematic and methodologically robust manner, as well as harmonizing highly divergent approaches currently explored for this purpose. This can serve as a foundation for a systematic, evidence-based approach to monitoring, identifying, and mitigating future infodemic harms in emergency preparedness and prevention. Objective: In this paper, we summarize the Fifth World Health Organization (WHO) Infodemic Management Conference structure, proceedings, outcomes, and proposed actions seeking to identify the interdisciplinary approaches and frameworks needed to enable the measurement of the burden of infodemics. Methods: An iterative human-centered design (HCD) approach and concept mapping were used to facilitate focused discussions and allow for the generation of actionable outcomes and recommendations. The discussions included 86 participants representing diverse scientific disciplines and health authorities from 28 countries across all WHO regions, along with observers from civil society and global public health-implementing partners. A thematic map capturing the concepts matching the key contributing factors to the public health burden of infodemics was used throughout the conference to frame and contextualize discussions. Five key areas for immediate action were identified. Results: The 5 key areas for the development of metrics to assess the burden of infodemics and associated interventions included (1) developing standardized definitions and ensuring the adoption thereof; (2) improving the map of concepts influencing the burden of infodemics; (3) conducting a review of evidence, tools, and data sources; (4) setting up a technical working group; and (5) addressing immediate priorities for postpandemic recovery and resilience building. The summary report consolidated group input toward a common vocabulary with standardized terms, concepts, study designs, measures, and tools to estimate the burden of infodemics and the effectiveness of infodemic management interventions. Conclusions: Standardizing measurement is the basis for documenting the burden of infodemics on health systems and population health during emergencies. Investment is needed into the development of practical, affordable, evidence-based, and systematic methods that are legally and ethically balanced for monitoring infodemics; generating diagnostics, infodemic insights, and recommendations; and developing interventions, action-oriented guidance, policies, support options, mechanisms, and tools for infodemic managers and emergency program managers.

2.
Insects ; 11(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271986

RESUMEN

(1) Background: Landscape simplification is a major threat to bee and wasp conservation in the tropics, but reliable, long-term population data are lacking. We investigated how community composition, diversity, and abundance of tropical solitary bees and wasps change with landscape simplification (plant diversity, plant richness, distance from forest, forest cover, and land use type) and season. (2) Methods: We installed 336 timber and cob trap nests in four complex forests and three simplified orchards within the subtropical biodiversity hotspot of south-east Queensland, Australia. Trap nests were replaced every season for 23 months and all emergents identified. (3) Results: We identified 28 wasp species and 13 bee species from 2251 brood cells. Bee and wasp community composition changed with landscape simplification such that large, ground-nesting, and spider-hunting species were present in all landscapes, while those with specialist resource requirements and (clepto) parasitoids were present only in complex landscapes. Abundance and diversity of bees and wasps were unaffected by landscape simplification but increased with rainfall. (4) Conclusions: This study highlights the need for multi-year studies incorporating nuanced measures such as composition with a focus on functional diversity to detect changes bee and wasp populations.

3.
Insects ; 11(2)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075297

RESUMEN

Bees need food of appropriate nutritional quality to maintain their metabolic functions. They largely obtain all required nutrients from floral resources, i.e., pollen and nectar. However, the diversity, composition and nutritional quality of floral resources varies with the surrounding environment and can be strongly altered in human-impacted habitats. We investigated whether differences in plant species richness as found in the surrounding environment correlated with variation in the floral diversity and nutritional quality of larval provisions (i.e., mixtures of pollen, nectar and salivary secretions) composed by the mass-provisioning stingless bee Tetragonula carbonaria (Apidae: Meliponini). We found that the floral diversity of larval provisions increased with increasing plant species richness. The sucrose and fat (total fatty acid) content and the proportion and concentration of the omega-6 fatty acid linoleic acid decreased, whereas the proportion of the omega-3 fatty acid linolenic acid increased with increasing plant species richness. Protein (total amino acid) content and amino acid composition did not change. The protein to fat (P:F) ratio, known to affect bee foraging, increased on average by more than 40% from plantations to forests and gardens, while the omega-6:3 ratio, known to negatively affect cognitive performance, decreased with increasing plant species richness. Our results suggest that plant species richness may support T. carbonaria colonies by providing not only a continuous resource supply (as shown in a previous study), but also floral resources of high nutritional quality.

4.
Sci Rep ; 8(1): 12353, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120304

RESUMEN

Bee population declines are often linked to human impacts, especially habitat and biodiversity loss, but empirical evidence is lacking. To clarify the link between biodiversity loss and bee decline, we examined how floral diversity affects (reproductive) fitness and population growth of a social stingless bee. For the first time, we related available resource diversity and abundance to resource (quality and quantity) intake and colony reproduction, over more than two years. Our results reveal plant diversity as key driver of bee fitness. Social bee colonies were fitter and their populations grew faster in more florally diverse environments due to a continuous supply of food resources. Colonies responded to high plant diversity with increased resource intake and colony food stores. Our findings thus point to biodiversity loss as main reason for the observed bee decline.


Asunto(s)
Abejas , Conducta Animal , Ambiente , Aptitud Física , Animales , Biodiversidad , Ecosistema , Dinámica Poblacional
5.
Artículo en Inglés | MEDLINE | ID: mdl-27311817

RESUMEN

To date, no study has investigated how landscape structural (visual) alterations affect navigation and thus homing success in stingless bees. We addressed this question in the Australian stingless bee Tetragonula carbonaria by performing marking, release and re-capture experiments in landscapes differing in habitat homogeneity (i.e., the proportion of elongated ground features typically considered prominent visual landmarks). We investigated how landscape affected the proportion of bees and nectar foragers returning to their hives as well as the earliest time bees and foragers returned. Undisturbed landscapes with few landmarks (that are conspicuous to the human eye) and large proportions of vegetation cover (natural forests) were classified visually/structurally homogeneous, and disturbed landscapes with many landmarks and fragmented or no extensive vegetation cover (gardens and plantations) visually/structurally heterogeneous. We found that proportions of successfully returning nectar foragers and earliest times first bees and foragers returned did not differ between landscapes. However, most bees returned in the visually/structurally most (forest) and least (garden) homogeneous landscape, suggesting that they use other than elongated ground features for navigation and that return speed is primarily driven by resource availability in a landscape.


Asunto(s)
Abejas/fisiología , Ecosistema , Ambiente , Fenómenos de Retorno al Lugar Habitual/fisiología , Animales
6.
Ecol Evol ; 6(5): 1304-16, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26848387

RESUMEN

Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...