Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 10887, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764794

RESUMEN

In relation to conventional vacuum-based processing techniques inkjet printing enables upscaling fabrication of basic electronic elements, such as transistors and diodes. We present the fully inkjet printed flexible electronic circuits, including organic voltage inverter which can work as a NOT logic gate. For this purpose the special ink compositions were formulated to preparation of gate dielectric layer containing poly (4-vinylphenol) and of the semiconductor layer poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)]. A printed photoxidized poly (3-hexyltiophene) semiconductor was used as the active layer of the resistors. The operation of the printed inverters and NOT logic gates was analyzed based on the DC current-voltage characteristics of the devices. The resistance of the devices to atmospheric air was also tested. Not encapsulated samples stored for three years under ambient conditions. Followed by annealing to remove moisture showed unchanged electrical parameters in comparison to freshly printed samples.

2.
ACS Appl Mater Interfaces ; 10(15): 12904-12912, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29580050

RESUMEN

Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 74(5): 1235-41, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19879185

RESUMEN

A membrane optode was developed utilizing the 8-hydroxyquinaldine (HQ) facilitated preconcentration of UO(2)(2+) ions and subsequent colored complex formation of UO(2)(2+) with 4-(2-thiazolylazo)-resorcinol (TAR) in optode matrix. The composition of the membrane optode was optimized by scanning several extractants immobilized in different plasticized polymer matrices. It was observed that the chelating agent HQ along with an indicator TAR immobilized in the tri-(2-ethylhexyl)phosphate (TEHP) plasticized cellulose triacetate matrix (CTA) was best suited as an optode for the UO(2)(2+) ions in aqueous samples. On sorption of UO(2)(2+) in the optode matrix, TAR changes color of the optode from yellow to magenta having a maximum absorbance (lambda(max)) at 546 nm. The uptake of UO(2)(2+) ions in the optode was found to be pH dependent and was maximum (>90%) at pH above 3. The acetate buffer (0.1 mol L(-1) sodium acetate + 0.1 mol L(-1) acetic acid) was found to be necessary for the stable response. The optimum equilibration time for the optode (2 cm x 1 cm) was found to be 30 min in 10 mL aqueous sample containing acetate buffer (pH 4.75). The equilibration time was found to increase with increase in aqueous sample volume. The optode response was found to be linear in the UO(2)(2+) ions concentration range of 0.01-0.11 micromol L(-1) in tap water as well as aqueous solutions containing 0.1 mol L(-1) NaCl or NaNO(3). The tolerance to the presence of several cations and anions in the determination of UO(2)(2+) ion was studied. It was observed that the optode in the presence of buffer can tolerate presence of large amounts of interfering cations (Ce(4+), V(4+), Eu(3+), Al(3+), Fe(3+), Ni(2+), Cd(2+), Co(2+), Pb(2+), Hg(2+), Cu(2+) and Th(4+) ions) without hindering the sorption of UO(2)(2+) ions in the optode matrix. The present work indicated that 50 ppb UO(2)(2+) ions in 100 mL sample can easily be quantified using this optode. The optode was found to be fully reversible, can readily be regenerated by equilibrating it with 0.1 mol L(-1) HNO(3) and reusable up to three cycles. The applicability of the developed optode in real samples was studied by determining uranium in the ground water samples spiked with a known quantity of UO(2)(2+) ions.


Asunto(s)
Compuestos Azo/química , Membranas Artificiales , Quinaldinas/química , Resorcinoles/química , Uranio/análisis , Absorción , Adsorción , Calibración , Electrodos , Concentración de Iones de Hidrógeno , Iones , Cinética , Suelo/análisis , Soluciones , Espectrofotometría Ultravioleta , Factores de Tiempo , Uranio/aislamiento & purificación , Abastecimiento de Agua/análisis
4.
J Hazard Mater ; 166(1): 377-82, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19097696

RESUMEN

A color changeable optode for Hg(II) was prepared by the immobilization of a dye 4-(2-pyridylazo)resorcinol (PAR) and a liquid ion-exchanger trioctylmethylammonium chloride (Aliquat-336) in the tri-(2-ethylhexyl) phosphate plasticized cellulose triacetate matrix. Hg(II) and CH(3)Hg(+) from aqueous samples could be quantitatively preconcentrated in this transparent optode producing a distinct color change (lambda(max)=520 nm) within 5 min equilibration time in bicarbonate aqueous medium or 30 min in natural water. Whereas optode sample without Aliquat-336 did not change its color corresponding to Hg-PAR complex on equilibrium with the same aqueous solution containing Hg(II) ions. The uptake of Hg(II) was found to be pH dependent with a maximum (>90%) at a pH 7.5. The uptake of ions like Cu(II), Fe(II), Zn(II) and Pb(II) was negligible in the optode where as the uptake of Cd(II) and Zn(II) ions was 10-15% at pH 7.5. The optode developed in the present work was studied for its analytical application for Hg(II) in the aqueous samples by spectrophotometry, radiotracer ((203)Hg), Energy Dispersive X-ray Fluorescence (EDXRF) analyses and Instrumental Neutron Activation Analysis (INAA). The minimum amount of Hg(II) required to produce detectable response by spectrophotometry, INAA and EDXRF were found to be 5.5, 1 and 12 microg, respectively. This optode showed a linear increase in the absorbance at lambda(max)=520 nm over a concentration range of 0.22-1.32 microg/mL of Hg(II) ions in aqueous solution for 5 min. The preconcentration of Hg(II) from large volume of aqueous solution was used to extend the lower limit of concentration range that can be quantified by the spectrophotometry of optode. It was observed that preconcentration of 11 microg Hg(II) in 100mL (0.11 microg/mL) in aqueous samples gives a distinct color change and absorbance above 3 sigma of the blank absorbance. The optode developed in the present work was found to be reusable.


Asunto(s)
Mercurio/análisis , Análisis Espectral/instrumentación , Color , Colorantes , Intercambio Iónico , Membranas Artificiales , Compuestos de Metilmercurio/análisis , Compuestos de Amonio Cuaternario , Resorcinoles , Análisis Espectral/métodos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA