Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Endocrinol ; 26(7): 1213-24, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22570335

RESUMEN

Chronic hyperglycemia exerts a deleterious effect on endothelium, contributing to endothelial dysfunction and microvascular complications in poorly controlled diabetes. To understand the underlying mechanism, we studied the effect of endothelin-1 (ET-1) on endothelial production of Forkhead box O1 (FOXO1), a forkhead transcription factor that plays an important role in cell survival. ET-1 is a 21-amino acid peptide that is secreted primarily from endothelium. Using adenovirus-mediated gene transfer approach, we delivered FOXO1 cDNA into cultured human aorta endothelial cells. FOXO1 was shown to stimulate B cell leukemia/lymphoma 2-associated death promoter (BAD) production and promote cellular apoptosis. This effect was counteracted by ET-1. In response to ET-1, FOXO1 was phosphorylated and translocated from the nucleus to cytoplasm, resulting in inhibition of BAD production and mitigation of FOXO1-mediated apoptosis. Hyperglycemia stimulated FOXO1 O-glycosylation and promoted its nuclear localization in human aorta endothelial cells. This effect accounted for unbridled FOXO1 activity in the nucleus, contributing to augmented BAD production and endothelial apoptosis under hyperglycemic conditions. FOXO1 expression became deregulated in the aorta of both streptozotocin-induced diabetic mice and diabetic db/db mice. This hyperglycemia-elicited FOXO1 deregulation and its ensuing effect on endothelial cell survival was corrected by ET-1. Likewise, FoxO1 deregulation in the aorta of diabetic mice was reversible after the reduction of hyperglycemia by insulin therapy. These data reveal a mechanism by which FOXO1 mediated the autocrine effect of ET-1 on endothelial cell survival. FOXO1 deregulation, resulting from an impaired ability of ET-1 to control FOXO1 activity in endothelium, may contribute to hyperglycemia-induced endothelial lesion in diabetes.


Asunto(s)
Supervivencia Celular , Células Endoteliales/fisiología , Endotelina-1/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Aorta , Apoptosis , Línea Celular , Diabetes Mellitus/metabolismo , Células Endoteliales/citología , Femenino , Proteína Forkhead Box O1 , Técnicas de Transferencia de Gen , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Insulina/farmacología , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Fosforilación , Distribución Aleatoria , Proteína Letal Asociada a bcl/biosíntesis
2.
J Biol Chem ; 285(40): 30634-43, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20660595

RESUMEN

Ca(2+) may trigger apoptosis in ß-cells. Hence, the control of intracellular Ca(2+) may represent a potential approach to prevent ß-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca(2+)-ATPase (PMCA) overexpression on Ca(2+)-regulated apoptosis in clonal ß-cells. Clonal ß-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca(2+)] using a combination of aequorins with different Ca(2+) affinities and on the ER and mitochondrial pathways of apoptosis. ß-cell stimulation generated microdomains of high [Ca(2+)] in the cytosol and subcellular heterogeneities in [Ca(2+)] among mitochondria. Overexpression of PMCA decreased [Ca(2+)] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing ß-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal ß-cell stimulation generates microdomains of high [Ca(2+)] in the cytosol and subcellular heterogeneities in [Ca(2+)] among mitochondria. PMCA overexpression depletes intracellular [Ca(2+)] stores and, despite a decrease in mitochondrial [Ca(2+)], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca(2+) homeostasis that could decrease ß-cell apoptosis in diabetes.


Asunto(s)
Apoptosis , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/enzimología , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/biosíntesis , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Aequorina/genética , Aequorina/metabolismo , Animales , Línea Celular , Citocromos c/genética , Citocromos c/metabolismo , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Permeabilidad , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Ratas , Respuesta de Proteína Desplegada/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
3.
Endocrinology ; 151(8): 3521-35, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20501674

RESUMEN

Forkhead box O1 (FoxO1) is a transcription factor that mediates the inhibitory effect of insulin on target genes in hepatic metabolism. Hepatic FoxO1 activity is up-regulated to promote glucose production during fasting and is suppressed to limit postprandial glucose excursion after meals. Increased FoxO1 activity augments the expression of insulin receptor (IR) and IR substrate (IRS)2, which in turn inhibits FoxO1 activity in response to reduced insulin action. To address the underlying physiology of such a feedback loop for regulating FoxO1 activity, we delivered FoxO1-ADA by adenovirus-mediated gene transfer into livers of adult mice. FoxO1-ADA is a constitutively active allele that is refractory to insulin inhibition, allowing us to determine the metabolic effect of a dislodged FoxO1 feedback loop in mice. We show that hepatic FoxO1-ADA production resulted in significant induction of IR and IRS2 expression. Mice with increased FoxO1-ADA production exhibited near glycogen depletion. Unexpectedly, hepatic FoxO1-ADA production elicited a profound unfolded protein response, culminating in the induction of hepatic glucose-regulated protein 78 (GRP78) expression. These findings were recapitulated in primary human and mouse hepatocytes. FoxO1 targeted GRP78 gene for trans-activation via selective binding to an insulin responsive element in the GRP78 promoter. This effect was counteracted by insulin. Our studies underscore the importance of an IR and IRS2-dependent feedback loop to keep FoxO1 activity in check for maintaining hepatic glycogen homeostasis and promoting adaptive unfolded protein response in response to altered metabolism and insulin action. Excessive FoxO1 activity, resulting from a dislodged FoxO1 feedback loop in insulin resistant liver, is attributable to hepatic endoplasmic reticulum stress and metabolic abnormalities in diabetes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Factores de Transcripción Forkhead/fisiología , Insulina/metabolismo , Hígado/metabolismo , Respuesta de Proteína Desplegada/genética , Adenoviridae/genética , Animales , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Glucógeno/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/efectos de los fármacos , Ratones , Ratones Transgénicos , Receptor de Insulina/metabolismo , Elementos de Respuesta/efectos de los fármacos , Transducción Genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/fisiología
4.
Cell Cycle ; 7(20): 3162-70, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18927507

RESUMEN

Very low-density lipoproteins (VLDL) are triglyceride-rich particles. VLDL is synthesized in hepatocytes and secreted from the liver in a pathway that is tightly regulated by insulin. Hepatic VLDL production is stimulated in response to reduced insulin action, resulting in increased release of VLDL into the blood under fasting conditions. Circulating VLDL serves as a vehicle for transporting lipids to peripheral tissues for energy homeostasis. Conversely, hepatic VLDL production is suppressed in response to increased insulin release after meals. This effect is critical for preventing prolonged excursion of postprandial plasma lipid profiles in normal individuals. In subjects with obesity and type 2 diabetes, the ability of insulin to regulate VLDL production becomes impaired due to insulin resistance in the liver, resulting in excessive VLDL secretion and accumulation of triglyceride-rich particles in the blood. Such abnormality in lipid metabolism characterizes the pathogenesis of hypertriglyceridemia and accounts for increased risk of coronary artery disease in obesity and type 2 diabetes. Nevertheless, the molecular basis that links insulin resistance to VLDL overproduction remains poorly understood. Our recent studies illustrate that the forkhead transcription factor FoxO1 acts in the liver to integrate hepatic insulin action to VLDL production. Augmented FoxO1 activity in insulin resistant livers promotes hepatic VLDL overproduction and predisposes to the development of hypertriglyceridemia. These new findings raise an important question: Is FoxO1 a therapeutic target for ameliorating hypertriglyceridemia? Here we discuss this question in the context of recent advances toward our understanding of the pathophysiology of hypertriglyceridemia.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Hipertrigliceridemia/fisiopatología , Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Transducción de Señal/fisiología , Animales , Apolipoproteínas B/metabolismo , Línea Celular , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Humanos , Hipertrigliceridemia/etiología , Hipertrigliceridemia/terapia , Hígado/metabolismo
5.
Biosci Rep ; 28(5): 251-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18643776

RESUMEN

In order to investigate the possible link between PMCA (plasma-membrane Ca(2+)-ATPase) activity and D-glucose catabolism in insulin-producing cells, BRIN-BD11 cells were transfected with two isoforms of PMCA2. Transfection of insulin-producing BRIN-BD11 cells with PMCA2yb and PMCA2wb was documented by RT-PCR (reverse transcription-PCR), Western blot analysis, indirect immunofluorescence microscopy and (45)Ca(2+) uptake by microsomes. In the transfected cells, the overexpression of PMCA coincided with three major anomalies of D-glucose metabolism, namely a lower rate of D-[5-(3)H]glucose utilization prevailing at a low extracellular concentration of D-glucose (1.1 mM), a low ratio between D-[U-(14)C]oxidation and D-[5-(3)H]glucose utilization prevailing at a high extracellular glucose concentration (16.7 mM), and a high ratio between the net generation of (14)C-labelled acidic metabolites and amino acids and that of (3)H(2)O from D-[5-(3)H]glucose. These anomalies resulted in a decreased estimated rate of ATP generation (linked to the catabolism of the hexose) and a lowered ATP cell content, whether at low or high extracellular D-glucose concentrations. The net uptake of (45)Ca(2+) by intact cells was also decreased in the transfected cells, but to a greater extent than can apparently be attributed to the change in the ATP-generation rate. These findings document the relevance of PMCA activity to both D-glucose metabolism and Ca(2+) handling in insulin-producing cells, with emphasis on the key role of both cytosolic and mitochondrial Ca(2+) concentrations in the regulation of D-glucose catabolism. They also reveal that overexpression of PMCA leads, in insulin-producing cells, to an imbalance between ATP generation and consumption.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Calcio/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/biosíntesis , Animales , Línea Celular , Expresión Génica , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Isoenzimas/biosíntesis , Isoenzimas/genética , Microsomas/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Ratas
6.
J Clin Invest ; 118(6): 2347-64, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18497885

RESUMEN

Excessive production of triglyceride-rich VLDL is attributable to hypertriglyceridemia. VLDL production is facilitated by microsomal triglyceride transfer protein (MTP) in a rate-limiting step that is regulated by insulin. To characterize the underlying mechanism, we studied hepatic MTP regulation by forkhead box O1 (FoxO1), a transcription factor that plays a key role in hepatic insulin signaling. In HepG2 cells, MTP expression was induced by FoxO1 and inhibited by exposure to insulin. This effect correlated with the ability of FoxO1 to bind and stimulate MTP promoter activity. Deletion or mutation of the FoxO1 target site within the MTP promoter disabled FoxO1 binding and resulted in abolition of insulin-dependent regulation of MTP expression. We generated mice that expressed a constitutively active FoxO1 transgene and found that increased FoxO1 activity was associated with enhanced MTP expression, augmented VLDL production, and elevated plasma triglyceride levels. In contrast, RNAi-mediated silencing of hepatic FoxO1 was associated with reduced MTP and VLDL production in adult mice. Furthermore, we found that hepatic FoxO1 abundance and MTP production were increased in mice with abnormal triglyceride metabolism. These data suggest that FoxO1 mediates insulin regulation of MTP production and that augmented MTP levels may be a causative factor for VLDL overproduction and hypertriglyceridemia in diabetes.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Transcripción Forkhead/fisiología , Regulación de la Expresión Génica , Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Interferencia de ARN , Transducción de Señal , Triglicéridos/metabolismo
7.
Ann N Y Acad Sci ; 1099: 456-67, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17446486

RESUMEN

Recent progresses concerning the Na/Ca exchanger (NCX) and the plasma membrane Ca2+-ATPase (PMCA) in the pancreatic beta cell are reviewed. The rat beta cell expresses two splice variants of NCX1 and six splice variants of the 4 PMCA isoforms. At the protein level, the most abundant forms are PMCA2 and PMCA3, providing the first evidence for the presence of these two isoforms in a non-neuronal tissue. Overexpression of NCX1 in an insulinoma cell line altered the initial rise in cytosolic-free Ca2+ concentration ([Ca2+]i) induced by membrane depolarization and the return of the [Ca2+]i to the baseline value on membrane repolarization, indicating that NCX contributes to both Ca2+ inflow and outflow in the beta cell. In contrast, overexpression of the PMCA markedly reduced the global rise in Ca2+ induced by membrane depolarization, indicating that the PMCA has a capacity higher than expected to extrude Ca2+. Glucose, the main physiological stimulus of insulin release from the beta cell, has opposite effect on NCX and PMCA transcription, expression and activity, inducing an increase in the case of NCX and a decrease in the case of the PMCA. This indicates that when exposed to glucose, the beta cell switches from a low-efficiency Ca2+ extruding mechanism, the PMCA, to a high-capacity system, the NCX, in order to better face the increase in Ca2+ inflow induced by the sugar. To our knowledge, this is the first demonstration of a reciprocal change in PMCA and NCX1 expression and activity in response to a given stimulus in any tissue.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Muerte Celular , Islotes Pancreáticos/fisiología , Intercambiador de Sodio-Calcio/fisiología , Animales , Calcio/metabolismo , Membrana Celular/enzimología , Glucosa/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Isoformas de Proteínas/fisiología , Ratas , Intercambiador de Sodio-Calcio/genética , Transcripción Genética
8.
Am J Physiol Endocrinol Metab ; 292(2): E421-34, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16985262

RESUMEN

High-fructose consumption is associated with insulin resistance and diabetic dyslipidemia, but the underlying mechanism is unclear. We show in hamsters that high-fructose feeding stimulated forkhead box O1 (FoxO1) production and promoted its nuclear redistribution in liver, correlating with augmented apolipoprotein C-III (apoC-III) production and impaired triglyceride metabolism. High-fructose feeding upregulated peroxisome proliferator-activated receptor-gamma coactivator-1beta and sterol regulatory element binding protein-1c expression, accounting for increased fat infiltration in liver. High-fructose-fed hamsters developed hypertriglyceridemia, accompanied by hyperinsulinemia and glucose intolerance. These metabolic aberrations were reversible by fenofibrate, a commonly used anti-hypertriglyceridemia agent that is known to bind and activate peroxisome proliferator-activated receptor-alpha (PPARalpha). PPARalpha physically interacted with, but functionally antagonized, FoxO1 in hepatic apoC-III expression. These data underscore the importance of FoxO1 deregulation in the pathogenesis of hypertriglyceridemia in high-fructose-fed hamsters. Counterregulation of hepatic FoxO1 activity by PPARalpha constitutes an important mechanism by which fibrates act to curb apoC-III overproduction and ameliorate hypertriglyceridemia.


Asunto(s)
Fenofibrato/farmacología , Factores de Transcripción Forkhead/antagonistas & inhibidores , Hipolipemiantes/farmacología , PPAR alfa/fisiología , Animales , Apolipoproteína C-III/metabolismo , Glucemia/análisis , Células Cultivadas , Cricetinae , Dieta , Factores de Transcripción Forkhead/metabolismo , Fructosa/administración & dosificación , Glucosa/metabolismo , Humanos , Lípidos/análisis , Hígado/química , Hígado/metabolismo , Masculino
9.
Endocrinology ; 147(12): 5641-52, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16997836

RESUMEN

FoxO1 plays an important role in mediating the effect of insulin on hepatic metabolism. Increased FoxO1 activity is associated with reduced ability of insulin to regulate hepatic glucose production. However, the underlying mechanism and physiology remain unknown. We studied the effect of FoxO1 on the ability of insulin to regulate hepatic metabolism in normal vs. insulin-resistant liver under fed and fasting conditions. FoxO1 gain of function, as a result of adenovirus-mediated or transgenic expression, augmented hepatic gluconeogenesis, accompanied by decreased glycogen content and increased fat deposition in liver. Mice with excessive FoxO1 activity exhibited impaired glucose tolerance. Conversely, FoxO1 loss of function, caused by hepatic production of its dominant-negative variant, suppressed hepatic gluconeogenesis, resulting in enhanced glucose disposal and improved insulin sensitivity in db/db mice. FoxO1 expression becomes deregulated, culminating in increased nuclear localization and accounting for its increased transcription activity in livers of both high fat-induced obese mice and diabetic db/db mice. Increased FoxO1 activity resulted in up-regulation of hepatic peroxisome proliferator-activated receptor-gamma coactivator-1beta, fatty acid synthase, and acetyl CoA carboxylase expression, accounting for increased hepatic fat infiltration. These data indicate that hepatic FoxO1 deregulation impairs the ability of insulin to regulate hepatic metabolism, contributing to the development of hepatic steatosis and abnormal metabolism in diabetes.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Hígado/metabolismo , Animales , Células Cultivadas , Dieta Aterogénica , Ayuno/metabolismo , Ácidos Grasos/análisis , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Glucosa/metabolismo , Humanos , Hígado/química , Glucógeno Hepático/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores de Leptina , Distribución Tisular
10.
J Biol Chem ; 278(25): 22956-63, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12682074

RESUMEN

When stimulated by glucose the pancreatic beta-cell displays large oscillations of the intracellular free Ca2+concentration, resulting from intermittent Ca2+ entry from the outside and outflow from the inside, the latter process being mediated by the plasma membrane Ca2+-ATPase (PMCA) and the Na+/Ca2+ exchanger (NCX). To understand the respective role of these two mechanisms, we studied the effect of glucose on PMCA and NCX transcription, expression, and activity in rat pancreatic islet cells. Glucose (11.1 and 22.2 mm) induced a parallel decrease in PMCA transcription, expression, and activity. In contrast the sugar induced a parallel increase in NCX transcription, expression, and activity. The effects of the sugar were mimicked by the metabolizable insulin secretagogue alpha-ketoisocaproate and persisted in the presence of the Ca2+-channel blocker nifedipine. The above results are compatible with the view that, when stimulated, the beta-cell switches from a low efficiency Ca2+-extruding mechanism, the PMCA, to a high capacity system, the Na/Ca exchanger, to better face the increase in Ca2+ inflow. These effects of glucose do not result from a direct effect of the sugar itself and are not mediated by the increase in intracellular free Ca2+ concentration induced by the sugar.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , Membrana Celular/enzimología , Regulación de la Expresión Génica , Glucosa/farmacología , Islotes Pancreáticos/metabolismo , Intercambiador de Sodio-Calcio/genética , Transcripción Genética , Animales , Secuencia de Bases , Bloqueadores de los Canales de Calcio/farmacología , ATPasas Transportadoras de Calcio/efectos de los fármacos , Caproatos/farmacología , Proteínas de Transporte de Catión , Células Cultivadas , Cartilla de ADN , Regulación de la Expresión Génica/efectos de los fármacos , Islotes Pancreáticos/enzimología , Cetoácidos/farmacología , Cinética , Nifedipino/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Intercambiador de Sodio-Calcio/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
13.
Diabetes ; 51(9): 2773-88, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12196471

RESUMEN

In the mouse beta-cell, glucose generates large amplitude oscillations of the cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) that are synchronous to insulin release oscillations. To examine the role played by [ Ca(2+)](i) oscillations in the process of insulin release, we examined the effect of plasma membrane Ca(2+)-ATPase (PMCA) overexpression on glucose-induced Ca(2+) oscillations and insulin release in BRIN-BD11 cells. BRIN-BD11 cells were stably transfected with PMCA2wb. Overexpression could be assessed at the mRNA and protein level, with appropriate targeting to the plasma membrane assessed by immunofluorescence and the increase in PMCA activity. In response to K(+), overexpressing cells showed a markedly reduced rise in [Ca(2+)](i). In response to glucose, control cells showed large amplitude [Ca(2+)](i) oscillations, whereas overexpressing cells showed markedly reduced increases in [Ca(2+)](i) without such large oscillations. Suppression of [Ca(2+)](i) oscillations was accompanied by an increase in glucose metabolism and insulin release that remained oscillatory despite having a lower periodicity. Hence, [Ca(2+)] (i) oscillations appear unnecessary for glucose-induced insulin release and may even be less favorable than a stable increase in [ Ca(2+)](i) for optimal hormone secretion. [Ca(2+)](i) oscillations do not directly drive insulin release oscillations but may nevertheless intervene in the fine regulation of such oscillations.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Animales , Calcio/farmacocinética , Línea Celular , Membrana Celular/enzimología , Membrana Celular/fisiología , Citosol/metabolismo , Electrofisiología , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Secreción de Insulina , Oscilometría , Potasio/fisiología , Ratas , Transfección
14.
Diabetes ; 51(6): 1815-24, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12031969

RESUMEN

Ca(2+) may trigger programmed cell death (apoptosis) and regulate death-specific enzymes. Therefore, the development of strategies to control Ca(2+) homeostasis may represent a potential approach to prevent or enhance cell apoptosis. To test this hypothesis, the plasma membrane Na/Ca exchanger (NCX1.7 isoform) was stably overexpressed in insulin-secreting tumoral cells. NCX1.7 overexpression increased apoptosis induced by endoplasmic reticulum (ER) Ca(2+)-ATPase inhibitors, but not by agents increasing intracellular calcium concentration ([Ca(2+)](i)), through the opening of plasma membrane Ca(2+)-channels. NCX1.7 overexpression reduced the rise in [Ca(2+)](i) induced by all agents, depleted ER Ca(2+) stores, sensitized the cells to Ca(2+)-independent proapoptotic signaling pathways, and reduced cell proliferation by approximately 40%. ER Ca(2+) stores depletion was accompanied by the activation of the ER-specific caspase (caspase-12), and the activation was enhanced by ER Ca(2+)-ATPase inhibitors. Hence, Na/Ca exchanger overexpression, by depleting ER Ca(2+) stores, triggers the activation of caspase-12 and increases apoptotic cell death. By increasing apoptosis and decreasing cell proliferation, overexpression of Na/Ca exchanger may represent a new potential approach in cancer gene therapy. On the other hand, our results open the way to the development of new strategies to control cellular Ca(2+) homeostasis that could, on the contrary, prevent the process of apoptosis that mediates, in part, beta-cell autoimmune destruction in type 1 diabetes.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Retículo Endoplásmico/fisiología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Intercambiador de Sodio-Calcio/genética , Animales , Western Blotting , Calcio/metabolismo , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Caspasa 12 , División Celular , Línea Celular , Fragmentación del ADN , Diabetes Mellitus Tipo 1/patología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Expresión Génica , Humanos , Secreción de Insulina , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/patología , Microscopía Fluorescente , Ratas
15.
Diabetes ; 51(2): 366-75, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11812743

RESUMEN

In response to glucose, mouse beta-cells display slow oscillations of the membrane potential and cytosolic free Ca(2+) concentration ([Ca(2+)](i)), whereas rat beta-cells display a staircase increase in these parameters. Mouse and rat islet cells differ also by their level of Na/Ca exchanger (NCX) activity. The view that the inward current generated by Na/Ca exchange shapes stimulus-induced electrical activity and [Ca(2+)](i) oscillations in pancreatic beta-cells was examined in insulin-producing BRIN-BD11 cells overexpressing the Na/Ca exchanger. BRIN-BD11 cells were stably transfected with NCX1.7, one of the exchanger isoforms identified in the beta-cell. Overexpression could be assessed at the mRNA and protein level. Appropriate targeting to the plasma membrane could be assessed by microfluorescence and the increase in Na/Ca exchange activity. In response to K(+), overexpressing cells showed a more rapid increase in [Ca(2+)](i) on membrane depolarization as well as a more rapid decrease of [Ca(2+)](i) on membrane repolarization. In response to glucose and tolbutamide, control BRIN cells showed large amplitude [Ca(2+)](i) oscillations. In contrast, overexpressing cells showed a staircase increase in [Ca(2+)](i) without such large oscillations. Diazoxide-induced membrane hyperpolarization restored large amplitude [Ca(2+)](i) oscillations in overexpressing cells. The present data confirm that Na/Ca exchange plays a significant role in the rat beta-cell [Ca(2+)](i) homeostasis, the exchanger being a versatile system allowing both Ca(2+) entry and outflow. Our data suggest that the current generated by the exchanger shapes stimulus-induced membrane potential and [Ca(2+)](i) oscillations in insulin-secreting cells, with the difference in electrical activity and [Ca(2+)](i) behavior seen in mouse and rat beta-cells resulting in part from a difference in Na/Ca exchange activity between these two cells.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Insulina/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Calcio/farmacocinética , Calcio/fisiología , Fusión Celular , Células Cultivadas , Diazóxido/farmacología , Conductividad Eléctrica , Glucosa/farmacología , Humanos , Hipoglucemiantes/farmacología , Secreción de Insulina , Oscilometría , Potasio/farmacología , Ratas , Tolbutamida/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...