Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 12722, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135374

RESUMEN

The potassium (K) and sodium (Na) elements in banana are needed for hydration reaction that can enhance the strength properties of concrete. This research aims (a) to determine the material engineering properties of banana skin ash (BSA) and concrete containing BSA, (b) to measure the strength enhancement of concrete due to BSA, and (c) to identify optimal application of BSA as supplementary cement materials (SCM) in concrete. The BSA characterization were assessed through X-ray fluorescence (XRF) and Blaine's air permeability. The workability, compressive strength, and microstructures of concrete containing BSA were analysed using slump test, universal testing machine (UTM) and scanning electron microscope (SEM). A total of 15 oxides and 19 non-oxides elements were identified in BSA with K (43.1%) the highest and Na was not detected. At 20 g of mass, the BSA had a higher bulk density (198.43 ± 0.00 cm3) than ordinary Portland cement (OPC) (36.32 ± 0.00 cm3) indicating availability of large surface area for water absorption. The concrete workability was reduced with the presence of BSA (0% BSA: > 100 mm, 1% BSA: 19 ± 1.0 mm, 2%: 15 ± 0.0 mm, 3% BSA: 10 ± 0.0 mm). The compressive strength increased with the number of curing days. The concrete microstructures were improved; interfacial transition zones (ITZ) decreased with an increase of BSA. The optimal percentage of BSA obtained was at 1.25%. The established model showed significant model terms (Sum of Squares = 260.60, F value = 69.84) with probability of 0.01% for the F-value to occur due to noise. The established model is useful for application in construction industries.

2.
Data Brief ; 31: 105868, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32637485

RESUMEN

Soil requires load bearing impact assessment for stability. Therefore, this study aims to utilize the multi-channel analysis surface wave (MASW) for soil subsurface investigation and profiling around Peninsular Malaysia. The standard penetration test (SPT) was conducted for comparison between factual N-value and computed N-value from shear wave velocity (Vs ) obtained from MASW using the Imai and Tonouchi equation. The correlation coefficient (R) and coefficient of determination, (R2 ), showed strong relationship between factual N-value and computed N-value. The model of Vs and factual N-value data distribution is non-normal but the analyzed relationship shows a significant level of p-value < 0.05. The R2 for each location of Vs -N-value relationship are ranging from 0.5 to 0.9.

3.
Data Brief ; 31: 105843, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32596432

RESUMEN

Coal combustion by-products (CCPs) (i.e. fly (FA) and bottom (BA) ashes) generated by power plants contain heavy metals. This research presents leaching properties of coal ashes (FA and BA) collected from Jimah coal-fired power station, Port Dickson, Negeri Sembilan using USEPA standard methods namely toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP). Heavy metals like lead (Pb), zinc (Zn), copper (Cu) and arsenic (As) were quantified using atomic absorption spectrometer (AAS). The leached of heavy metals fluxes were Cu < Zn < Pb < As. As leached the most whilst indicating of possible contamination from As. Overall, the ranges of leached concentration were adhered to permissible limits of hazardous waste criteria for metal (Pb and As) and industrial effluent (Zn and Cu). The presented data has potential reuse as reference for the coal ash concrete mixed design application in construction industries.

4.
Sci Total Environ ; 665: 196-212, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30772550

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of benzene rings. The objective of this research was to identify the optimum condition for the degradation of PAHs contaminated water using photo-Fenton oxidation process via response surface methodology (RSM). Aqueous solution was prepared and potable water samples were collected from water treatment plants in Perak Tengah, Perak, Malaysia in September 2016. The reaction time, pH, molarity of H2O2 and FeSO4 were analyzed followed by RSM using aqueous solution. A five level central composite design with quadratic model was used to evaluate the effects and interactions of these parameters. The response variable was the percentage of total organic carbon (TOC) removal. PAHs quantification was done using gas chromatography mass spectrometry analysis. The regression line fitted well with the data with R2 value of 0.9757. The lack of fit test gives the highest value of Sum of Squares (15,666.64) with probability F value 0.0001 showing significant quadratic model. The optimum conditions were established corresponding to the percentage of TOC removal. The PAHs removal efficiency for potable water samples ranged from 76.4% to 91% following the first order of kinetic rates with R2 values of >0.95. Conventional water treatment techniques are not effective for PAHs removal. Thus, advanced oxidation processes may be considered as an alternative to conventional water treatment techniques in Malaysia and other developing countries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA