Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 3): 140760, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39137574

RESUMEN

Cheesemaking with camel milk (CM) presents unique challenges and additional health benefits. This study involved preparing low-fat Cheddar cheese (LFCC) by blending bovine milk (BM) with varying levels of CM. Control cheese was made exclusively with BM. After 180 days of ripening, LFCC samples underwent in vitro digestion to determine antioxidant capacities, α-amylase and α-glucosidase inhibition, and angiotensin-converting enzyme inhibition. The peptide profile of LFCC treatments was analyzed using liquid chromatography-quadrupole-time of flight-mass spectrometry. Antioxidant and biological activities were influenced by BM-CM blends and digestion. At days 120 and 180, the number of αs1-casein-derived peptides increased in all samples except for LFCC made with 15% CM. Generally, 88 peptides exhibited ACE inhibition activity after 120 days of ripening, increasing to 114 by day 180. These findings suggest that ripening time positively affects the health-promoting aspects of functional cheese products.

2.
J Adv Res ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986809

RESUMEN

INTRODUCTION: Photo-oxidation is recognized as a contributor to the deterioration of milk quality, posing potential safety hazards to human health. However, there has been limited investigation into the impact of consuming photo-oxidized milk on health. OBJECTIVES: This study employs multi-omics analysis techniques to elucidate the mechanisms by which photo-oxidized milk induces oxidative stress in the liver. METHODS: Mouse model was used to determine the effect of the gavage administration of milk with varying degrees of photo-oxidation on the mouse liver. The damage degree was established by measuring serum markers indicative of oxidative stress, and with a subsequent histopathological examination of liver tissues. In addition, comprehensive metabolome, lipidome, and transcriptome analyses were conducted to elucidate the underlying molecular mechanisms of hepatic damage caused by photo-oxidized milk. RESULTS: A significant elevation in the oxidative stress levels and the presence of hepatocellular swelling and inflammation subsequent to the gavage administration of photo-oxidized milk to mice. Significant alterations in the levels of metabolites such as lumichrome, all-trans-retinal, L-valine, phosphatidylglycerol, and phosphatidylcholine within the hepatic tissue of mice. Moreover, photo-oxidized milk exerted a pronounced detrimental impact on the glycerophospholipid metabolism of mice liver. The peroxisome proliferator-activated receptors (PPAR) signaling pathway enrichment appreciated in the animals that consumed photo-oxidized milk further supports the substantial negative influence of photo-oxidized milk on hepatic lipid metabolism. Gene set enrichment and interaction analyses revealed that photo-oxidized milk inhibited the cytochrome P450 pathway in mice, while also affecting other pathways associated with cellular stress response and lipid biosynthesis. CONCLUSION: This comprehensive study provides significant evidence regarding the potential health risks associated with photo-oxidized milk, particularly in terms of hepatic oxidative damage. It establishes a scientific foundation for assessing the safety of such milk and ensuring the quality of dairy products.

3.
Food Chem X ; 22: 101354, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623505

RESUMEN

Polysaccharides are abundant macromolecules. The study extracted date seed polysaccharides (UPS) using ultrasound-assisted deep eutectic solvent extraction to valorize date seeds. UPS were subjected to comprehensive characterization and evaluation of their bioactivity, prebiotic properties, and their potential to modulate the gut microbiome. Characterization revealed UPS's heteropolysaccharide composition with galactose, mannose, fructose, glucose, and galacturonic acid respectively in 66.1, 13.3, 9.9, 5.4, and 5.1%. UPS showed a concentration-dependent increase of radical scavenging and antioxidant activities, evidenced by FRAP, TAC, and RP assays. They also displayed antimicrobial efficacy against E. coli O157:H7, S. typhimurium, S. aureus, and L. monocytogenes. Rheological analysis showed UPS's elastic-dominant nature with thixotropic tendencies. UPS inhibited α-glycosidase, α-amylase, and ACE up to 86%, and reduced Caco-2 and MCF-7 cell viability by 70% and 46%, respectively. UPS favored beneficial gut microbiota growth, releasing significant SCFAs during fecal fermentation.

5.
Int J Biol Macromol ; 262(Pt 2): 130167, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360226

RESUMEN

This study investigated the characteristics of polysaccharides from date pomace using microwave-assisted deep eutectic solvents. The impact on the gut microbiota and probiotics growth was examined in vitro. The study also examined its antioxidant properties, ability to inhibit enzymes linked to diabetes and high blood pressure, impact on cell growth, and physical properties. The isolated MPS had an average molecular weight of 8073.38 kDa and contained mannose, galacturonic acid, galactose, glucose, and fructose in specific proportions. At a concentration of 1000 mg/L, MPS showed strong antioxidant activity, with significant scavenging rates in various tests such as DPPH (57.0 ± 1.05 %) and ABTS (66.4 ± 2.48 %). MPS displayed 77 %, 80 %, and 43 % inhibition for α-amylase, α-glucosidase, and ACE-inhibition, respectively. MPS displayed significant antiproliferative effects, achieving 100 % and 99 % inhibition against Caco-2 and MCF-7 cells at 2500 mg/L, respectively. MPS showed broad-spectrum antibacterial properties against both Gram-positive and Gram-negative foodborne bacteria. Gemmiger formicilis, Blautia species, Collinsella aerofaciens, and Bifidobacterium longum showed strong positive correlations, suggesting increased SCFA production. Network analysis indicated species correlations, with 86 % showing negative correlations with Escherichia and Enterococcus saccharolyticus. MPS was abundant in Firmicutes, Actinobacteria, and Proteobacteria phyla. Date pomace could serve as a dietary fiber source, promoting better health.


Asunto(s)
Microbioma Gastrointestinal , Prebióticos , Humanos , Disolventes Eutécticos Profundos , Células CACO-2 , Microondas , Polisacáridos/farmacología , Bacterias Gramnegativas
6.
Sci Rep ; 14(1): 4863, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418836

RESUMEN

Plant-based melanin seems to be abundant, but it did not receive scientific attention despite its importance in plant biology and medicinal applications, e.g. photoprotection, radical scavenging, antimicrobial properties, etc. Date fruit melanin (DM) has complex, graphene-like, polymeric structure that needs characterization to understand its molecular properties and potential applications. This study provides the first investigation of the possible molecular composition of DM. High performance size-exclusion chromatography (HPSEC) suggested that DM contains oligomeric structures (569-3236 Da) and transmission electron microscopy (TEM) showed agglomeration of these structures in granules of low total porosity (10-1000 Å). Nuclear magnetic resonance (NMR) spectroscopy provided evidence for the presence of oligomeric proanthocyanidins and electron paramagnetic resonance (EPR) spectroscopy revealed a g-factor in the range 2.0034-2.005. Density functional theory (DFT) calculations suggested that the EPR signals can be associated with oligomeric proanthocyanidin structures having 4 and above molecular units of (-)-epicatechin. The discovery of edible melanin in date fruits and its characterization are expected to open a new area of research on its significance to nutritional and sensory characteristics of plant-based foods.


Asunto(s)
Catequina , Phoeniceae , Proantocianidinas , Proantocianidinas/química , Catequina/análisis , Melaninas/análisis , Frutas/química
7.
Food Chem ; 444: 138618, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38309077

RESUMEN

This study investigated the biological activities, prebiotic potentials, modulating gut microbiota, and rheological properties of polysaccharides derived from date seeds via microwave-assisted deep eutectic solvent systems. Averaged molecular weight (246.5 kDa) and a monosaccharide profile (galacturonic acid: glucose: mannose: fructose: galactose), classifying MPS as a heteropolysaccharide. MPS, at concentrations of 125-1000 µg/mL, demonstrates increasing free radical scavenging activities (DPPH, ABTS, MC, SOD, SORS, and LO), potent antioxidant potential (FRAP: 51.2-538.3 µg/mL; TAC: 28.3-683.4 µg/mL; RP: 18.5-171.2 µg/mL), and dose-dependent antimicrobial activity against common foodborne pathogens. Partially-purified MPS exhibits inhibition against α-glucosidase (79.6 %), α-amylase (85.1 %), and ACE (68.4 %), along with 80 % and 46 % inhibition against Caco-2 and MCF-7 cancer cells, respectively. Results indicate that MPS fosters the growth of beneficial fecal microbiota, including Proteobacteria, Firmicutes, and Actinobacteria, supporting microbes responsible for major SCFAs (acetic, propionic, and butyric acids) production, such as Ruminococcus and Blautia.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Disolventes Eutécticos Profundos , Prebióticos , Microondas , Células CACO-2 , Polisacáridos/farmacología , Polisacáridos/química , Semillas , Reología
8.
Foods ; 13(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338516

RESUMEN

The camel milk (CM) industry has witnessed a notable expansion in recent years. This expansion is primarily driven by the rising demand for CM and its fermented products. The perceived health and nutritional benefits of these products are mainly responsible for their increasing popularity. The composition of CM can vary significantly due to various factors, including the breed of the camel, its age, the stage of lactation, region, and season. CM contains several beneficial substances, including antimicrobial agents, such as lactoferrin, lysozyme, immunoglobulin G, lactoperoxidase, and N-acetyl-D-glucosaminidase, which protect it from contamination by spoilage and pathogenic bacteria, and contribute to its longer shelf life compared to bovine milk (BM). Nevertheless, certain harmful bacteria, such as Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli, have been detected in CM, which is a significant public health concern. Therefore, it is crucial to understand and monitor the microbial profile of CM and follow good manufacturing practices to guarantee its safety and quality. This review article explores various aspects of CM, including the types of beneficial and harmful bacteria present in it, the composition of the milk, its antimicrobial properties, its shelf life, and the production of fermented CM products.

9.
Food Chem ; 442: 138483, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241989

RESUMEN

Valorization of fruit by-products is a crucial area of research for the development of innovative bio-based products. This study investigated the physicochemical properties and health-promoting benefits of date syrup waste, both fermented by Pichia cecembensis or Pichia kudriavzevii (FDSW), and unfermented (CDSW). Metabolomics profiles of these samples were identified post in vitro digestion. FDSW exhibited 42 volatile compounds, including 9 new ones, and contained (-)-epicatechin, tyrosol, and gallic acid. Bioaccessible fractions of FDSW demonstrated substantial α-amylase inhibition, with percentages of 40.7 % and 53.9 %, respectively. FDSW displayed superior cytotoxicity against Caco2 and MCF-7 cancer cell lines, with an average of âˆ¼75 % and 56 %, respectively. Untargeted metabolomics analysis revealed an increase in secondary metabolites, totaling 27 metabolites. LC-QTOF analysis of bioaccessible carbohydrate metabolites in FDSW identified two phytochemical groups, alkaloids, and terpenoids. This study underscores the potential of FDSW for producing value-added bio-based products with desirable characteristics and health benefits.


Asunto(s)
Frutas , Ácido Gálico , Humanos , Células CACO-2 , Frutas/química , Ácido Gálico/análisis , Antioxidantes/análisis , Metabolómica
10.
Food Chem X ; 21: 101073, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235344

RESUMEN

Exopolysaccharides (EPSs) are carbohydrate polymers that can be produced from probiotic bacteria. This study characterized the EPSs from Enterococcus faecium (EPS-LB13) and Streptococcus thermophilus (EPS-MLB10) and evaluated their biological and technological potential. The EPSs had high molecular weight and different monosaccharide compositions. The EPSs exhibited various biological activities at 250 mg/L, such as scavenging free radicals (10 % to 88.8 %), enhancing antioxidant capacity (714 to 2848 µg/mL), inhibiting pathogens (53 % to 74 %), and suppressing enzymes and cancer cells (2 % to 83 %), etc. The EPSs supported the growth of beneficial gut bacteria from Proteobacteria, Bacteroidetes, Firmicutes, and Acinetobacter in fecal fermentation with total Short-chain fatty acids production from 5548 to 6023 PPM. Moreover, the EPSs reduced the gelation time of fermented skimmed bovine milk by more than half. These results suggest that the EPSs from LB13 and MLB10 have promising applications in the dairy and pharmaceutical industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA