Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 43(21): 3878-94, 2000 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11052793

RESUMEN

Nonpeptide delta opioid agonists are analgesics with a potentially improved side-effect and abuse liability profile, compared to classical opioids. Andrews analysis of the NIH nonpeptide lead SNC-80 suggested the removal of substituents not predicted to contribute to binding. This approach led to a simplified lead, N, N-diethyl-4-[phenyl(1-piperazinyl)methyl]benzamide (1), which retained potent binding affinity and selectivity to the human delta receptor (IC(50) = 11 nM, mu/delta = 740, kappa/delta > 900) and potency as a full agonist (EC(50) = 36 nM) but had a markedly reduced molecular weight, only one chiral center, and increased in vitro metabolic stability. From this lead, the key pharmacophore groups for delta receptor affinity and activation were more clearly defined by SAR and mutagenesis studies. Further structural modifications on the basis of 1 confirmed the importance of the N, N-diethylbenzamide group and the piperazine lower basic nitrogen for delta binding, in agreement with mutagenesis data. A number of piperazine N-alkyl substituents were tolerated. In contrast, modifications of the phenyl group led to the discovery of a series of diarylmethylpiperazines exemplified by N, N-diethyl-4-[1-piperazinyl(8-quinolinyl)methyl]benzamide (56) which had an improved in vitro binding profile (IC(50) = 0.5 nM, mu/delta = 1239, EC(50) = 3.6 nM) and increased in vitro metabolic stability compared to SNC-80.


Asunto(s)
Benzamidas/síntesis química , Piperazinas/síntesis química , Quinolinas/síntesis química , Receptores Opioides delta/agonistas , Animales , Benzamidas/química , Benzamidas/metabolismo , Disponibilidad Biológica , Línea Celular , Cromatografía Líquida de Alta Presión , Humanos , Técnicas In Vitro , Espectrometría de Masas , Microsomas Hepáticos/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Ensayo de Unión Radioligante , Ratas , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Termodinámica , Transfección
2.
J Med Chem ; 43(21): 3895-905, 2000 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11052794

RESUMEN

The design, synthesis, and pharmacological evaluation of a novel class of delta opioid receptor agonists, N, N-diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide (6a) and its analogues, are described. These compounds, formally derived from SNC-80 (2) by replacing the piperazine ring with a piperidine ring containing an exocyclic carbon carbon double bond, were found to bind with high affinity and exhibit excellent selectivity for the delta opioid receptor as full agonists. 6a, the simplest structure in the class, exhibited an IC(50) = 0.87 nM for the delta opioid receptors and extremely high selectivity over the mu receptors (mu/delta = 4370) and the kappa receptors (kappa/delta = 8590). Rat liver microsome studies on a selected number of compounds show these olefinic piperidine compounds (6) to be considerably more stable than SNC-80. This novel series of compounds appear to interact with delta opioid receptors in a similar way to SNC-80 since they demonstrate similar SAR. Two general approaches have been established for the synthesis of these compounds, based on dehydration of benzhydryl alcohols (7) and Suzuki coupling reactions of vinyl bromide (8), and are herewith reported.


Asunto(s)
Benzamidas/síntesis química , Piperidinas/síntesis química , Receptores Opioides delta/agonistas , Administración Oral , Animales , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Disponibilidad Biológica , Línea Celular , Cromatografía Líquida de Alta Presión , Humanos , Técnicas In Vitro , Espectrometría de Masas , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Piperazinas/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacología , Ensayo de Unión Radioligante , Ratas , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Termodinámica , Transfección
3.
J Gen Physiol ; 112(4): 485-501, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9758866

RESUMEN

Dehydrosoyasaponin-I (DHS-I) is a potent activator of high-conductance, calcium-activated potassium (maxi-K) channels. Interaction of DHS-I with maxi-K channels from bovine aortic smooth muscle was studied after incorporating single channels into planar lipid bilayers. Nanomolar amounts of intracellular DHS-I caused the appearance of discrete episodes of high channel open probability interrupted by periods of apparently normal activity. Statistical analysis of these periods revealed two clearly separable gating modes that likely reflect binding and unbinding of DHS-I. Kinetic analysis of durations of DHS-I-modified modes suggested DHS-I activates maxi-K channels through a high-order reaction. Average durations of DHS-I-modified modes increased with DHS-I concentration, and distributions of these mode durations contained two or more exponential components. In addition, dose-dependent increases in channel open probability from low initial values were high order with average Hill slopes of 2.4-2.9 under different conditions, suggesting at least three to four DHS-I molecules bind to maximally activate the channel. Changes in membrane potential over a 60-mV range appeared to have little effect on DHS-I binding. DHS-I modified calcium- and voltage-dependent channel gating. 100 nM DHS-I caused a threefold decrease in concentration of calcium required to half maximally open channels. DHS-I shifted the midpoint voltage for channel opening to more hyperpolarized potentials with a maximum shift of -105 mV. 100 nM DHS-I had a larger effect on voltage-dependent compared with calcium-dependent channel gating, suggesting DHS-I may differentiate these gating mechanisms. A model specifying four identical, noninteracting binding sites, where DHS-I binds to open conformations with 10-20-fold higher affinity than to closed conformations, explained changes in voltage-dependent gating and DHS-I-induced modes. This model of channel activation by DHS-I may provide a framework for understanding protein structures underlying maxi-K channel gating, and may provide a basis for understanding ligand activation of other ion channels.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Canales de Potasio/fisiología , Saponinas/farmacología , Triterpenos/farmacología , Animales , Aorta/química , Aorta/citología , Calcio/farmacología , Bovinos , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Electrofisiología , Activación del Canal Iónico/fisiología , Cinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Canales de Potasio/agonistas , Sarcolema/química
4.
J Biol Chem ; 273(26): 16289-96, 1998 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-9632689

RESUMEN

Coexpression of alpha and beta subunits of the high conductance Ca2+-activated K+ (maxi-K) channel leads to a 50-fold increase in the affinity for 125I-charybdotoxin (125I-ChTX) as compared with when the alpha subunit is expressed alone (Hanner, M., Schmalhofer, W. A., Munujos, P., Knaus, H.-G., Kaczorowski, G. J., and Garcia, M. L. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2853-2858). To identify those residues in the beta subunit that are responsible for this change in binding affinity, Ala scanning mutagenesis was carried out along the extracellular loop of beta, and the resulting effects on 125I-ChTX binding were determined after coexpression with the alpha subunit. Mutagenesis of each of the four Cys residues present in the loop causes a large reduction in toxin binding affinity, suggesting that these residues could be forming disulfide bridges. The existence of two disulfide bridges in the extracellular loop of beta was demonstrated after comparison of reactivities of native beta and single-Cys-mutated subunits to N-biotin-maleimide. Negatively charged residues in the loop of beta, when mutated individually or in combinations, had no effect on toxin binding with the exception of Glu94, whose alteration modifies kinetics of ligand association and dissociation. Further mutagenesis studies targeting individual residues between Cys76 and Cys103 indicate that four positions, Leu90, Tyr91, Thr93, and Glu94 are critical in conferring high affinity 125I-ChTX binding to the alpha.beta subunit complex. Mutations at these positions cause large effects on the kinetics of ligand association and dissociation, but they do not alter the physical interaction of beta with the alpha subunit. All these data, taken together, suggest that the large extracellular loop of the maxi-K channel beta subunit has a restricted conformation. Moreover, they are consistent with the view that four residues appear to be important for inducing an appropriate conformation within the alpha subunit that allows high affinity ChTX binding.


Asunto(s)
Caribdotoxina/metabolismo , Canales de Potasio Calcio-Activados , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Bovinos , Cistina/química , Cistina/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Canales de Potasio/química , Conformación Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA