Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Malar J ; 23(1): 122, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671462

RESUMEN

BACKGROUND: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. The current study sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii populations. METHODS: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii cohorts from West and Central Africa. RESULTS: This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points from which samples were analyzed and its presence confirmed through taxonomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. CONCLUSIONS: These findings emphasize the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Mosquitos Vectores , Animales , Anopheles/genética , Anopheles/efectos de los fármacos , Anopheles/clasificación , Resistencia a los Insecticidas/genética , Kenia , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Genética de Población , África Occidental , Insecticidas/farmacología , África Central , Femenino
2.
Res Sq ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38410447

RESUMEN

Background: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. In the current study, we sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well asdescribe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzi populations. Methods: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Results: This study reports the detection of Anopheles coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points sampled and its presence confirmed through taxonomic analysis. Additionally, we found a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies of ~60%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. Conclusions: These findings emphasise the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.

3.
Malar J ; 23(1): 8, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178145

RESUMEN

Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.


Asunto(s)
Malaria , Control de Mosquitos , Animales , Estados Unidos , Malaria/epidemiología , África del Sur del Sahara , Ecología , Vectores de Enfermedades , Mosquitos Vectores
4.
Sci Rep ; 13(1): 19420, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940673

RESUMEN

Lymphatic filariasis is a mosquito borne disease which leads to abnormal painful enlarged body parts, severe disability and social stigma. We screened Wuchereria bancrofti in Matayos constituency in Busia County. Blood samples were collected from 23 villages selected purposively based on clinical case reports. Finger prick and/or venous blood sampling and mosquito collections was carried out. Antigenaemia and filarial DNA prevalence were determined. Infection rates on mosquito pools were estimated and SPSS version 26 was used for descriptive statistics analysis. A total of 262 participants were recruited, 73.3% (n = 192) of the participants had no symptoms, 14.1% (n = 5.3) had swollen legs, 5.3% (n = 14) had painful legs and 3.8% (n = 10) with scrotal swellings. Average antigenemia prevalence was 35.9% (n = 94) and DNA prevalence was at 8.0% (n = 21). A total of 1305 mosquitoes were collected and pooled into 2-20 mosquitoes of the same species and from the same village. Two pools out of 78 were positive for filarial DNA with a minimum infection rate of 0.15%. From this study, antigenaemia and infected mosquitoes are an indication of active transmission. The clinical signs are evidence that filarial infections have been in circulation for over 10 years. The global climate change phenomenon currently happening has been shown to adversely affect the transmission of vector borne diseases and is likely to increase lymphatic filariasis transmission in the area. This study therefore recommends further screening before Mass Drug Administration, morbidity management and enhanced mosquito control Programmes are recommended in the study area.


Asunto(s)
Culex , Filariasis Linfática , Animales , Humanos , Wuchereria bancrofti , Kenia , Culex/genética , ADN de Helmintos/genética
5.
Emerg Infect Dis ; 29(12): 2498-2508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966106

RESUMEN

The Anopheles stephensi mosquito is an invasive malaria vector recently reported in Djibouti, Ethiopia, Sudan, Somalia, Nigeria, and Ghana. The World Health Organization has called on countries in Africa to increase surveillance efforts to detect and report this vector and institute appropriate and effective control mechanisms. In Kenya, the Division of National Malaria Program conducted entomological surveillance in counties at risk for An. stephensi mosquito invasion. In addition, the Kenya Medical Research Institute conducted molecular surveillance of all sampled Anopheles mosquitoes from other studies to identify An. stephensi mosquitoes. We report the detection and confirmation of An. stephensi mosquitoes in Marsabit and Turkana Counties by using endpoint PCR and morphological and sequence identification. We demonstrate the urgent need for intensified entomological surveillance in all areas at risk for An. stephensi mosquito invasion, to clarify its occurrence and distribution and develop tailored approaches to prevent further spread.


Asunto(s)
Anopheles , Investigación Biomédica , Malaria , Animales , Kenia/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Mosquitos Vectores
6.
Parasit Vectors ; 16(1): 335, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749577

RESUMEN

BACKGROUND: The demonstration that the recently discovered Anopheles symbiont Microsporidia MB blocks malaria transmission in Anopheles arabiensis and undergoes vertical and horizontal transmission suggests that it is a promising candidate for the development of a symbiont-based malaria transmission-blocking strategy. The infection prevalence and characteristics of Microsporidia MB in Anopheles gambiae sensu stricto (s.s.), another primary vector species of malaria in Kenya, were investigated. METHODS: Field-collected females were confirmed to be Microsporidia MB-positive after oviposition. Egg counts of Microsporidia MB-infected and non-infected individuals were used to infer the effects of Microsporidia MB on fecundity. The time to pupation, adult sex ratio and survival were used to determine if Microsporidia MB infection has similar characteristics in the host mosquitoes An. gambiae and An. arabiensis. The intensity of Microsporidia MB infection in tissues of the midgut and gonads, and in carcasses, was determined by quantitative polymerase chain reaction. To investigate horizontal transmission, virgin males and females that were either Microsporidia MB-infected or non-infected were placed in standard cages for 48 h and allowed to mate; transmission was confirmed by quantitative polymerase chain reaction targeting Microsporidia MB genes. RESULTS: Microsporidia MB was found to naturally occur at a low prevalence in An. gambiae s.s. collected in western Kenya. Microsporidia MB shortened the development time from larva to pupa, but other fitness parameters such as fecundity, sex ratio, and adult survival did not differ between Microsporidia MB-infected and non-infected hosts. Microsporidia MB intensities were high in the male gonadal tissues. Transmission experiments indicated that Microsporidia MB undergoes both maternal and horizontal transmission in An. gambiae s.s. CONCLUSIONS: The findings that Microsporidia MB naturally infects, undergoes maternal and horizontal transmission, and is avirulent in An. gambiae s.s. indicate that many of the characteristics of its infection in An. arabiensis hold true for the former. The results of the present study indicate that Microsporidia MB could be developed as a tool for the transmission-blocking of malaria across different Anopheles species.


Asunto(s)
Anopheles , Malaria , Microsporidios , Humanos , Animales , Femenino , Masculino , Anopheles/genética , Mosquitos Vectores , Insectos Vectores/genética
7.
J Med Chem ; 66(9): 6333-6353, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37094110

RESUMEN

Insecticide resistance jeopardizes the prevention of infectious diseases such as malaria and dengue fever by vector control of disease-transmitting mosquitoes. Effective new insecticidal compounds with minimal adverse effects on humans and the environment are therefore urgently needed. Here, we explore noncovalent inhibitors of the well-validated insecticidal target acetylcholinesterase (AChE) based on a 4-thiazolidinone scaffold. The 4-thiazolidinones inhibit AChE1 from the mosquitoes Anopheles gambiae and Aedes aegypti at low micromolar concentrations. Their selectivity depends primarily on the substitution pattern of the phenyl ring; halogen substituents have complex effects. The compounds also feature a pendant aliphatic amine that was important for activity; little variation of this group is tolerated. Molecular docking studies suggested that the tight selectivity profiles of these compounds are due to competition between two binding sites. Three 4-thiazolidinones tested for in vivo insecticidal activity had similar effects on disease-transmitting mosquitoes despite a 10-fold difference in their in vitro activity.


Asunto(s)
Aedes , Anopheles , Insecticidas , Animales , Humanos , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Mosquitos Vectores , Insecticidas/farmacología , Insecticidas/química , Relación Estructura-Actividad
8.
Lancet ; 399(10331): 1202-1203, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35339212
9.
Malar J ; 20(1): 461, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903240

RESUMEN

BACKGROUND: Molecular diagnostic tools have been incorporated in insecticide resistance monitoring programmes to identify underlying genetic basis of resistance and develop early warning systems of vector control failure. Identifying genetic markers of insecticide resistance is crucial in enhancing the ability to mitigate potential effects of resistance. The knockdown resistance (kdr) mutation associated with resistance to DDT and pyrethroids, the acetylcholinesterase-1 (ace-1R) mutation associated with resistance to organophosphates and carbamates and 2La chromosomal inversion associated with indoor resting behaviour, were investigated in the present study. METHODS: Anopheles mosquitoes sampled from different sites in Kenya and collected within the context of malaria vector surveillance were analysed. Mosquitoes were collected indoors using light traps, pyrethrum spray and hand catches between August 2016 and November 2017. Mosquitoes were identified using morphological keys and Anopheles gambiae sensu lato (s.l.) mosquitoes further identified into sibling species by the polymerase chain reaction method following DNA extraction by alcohol precipitation. Anopheles gambiae and Anopheles arabiensis were analysed for the presence of the kdr and ace-1R mutations, while 2La inversion was only screened for in An. gambiae where it is polymorphic. Chi-square statistics were used to determine correlation between the 2La inversion karyotype and kdr-east mutation. RESULTS: The kdr-east mutation occurred at frequencies ranging from 0.5 to 65.6% between sites. The kdr-west mutation was only found in Migori at a total frequency of 5.3% (n = 124). No kdr mutants were detected in Tana River. The ace-1R mutation was absent in all populations. The 2La chromosomal inversion screened in An. gambiae occurred at frequencies of 87% (n = 30), 80% (n = 10) and 52% (n = 50) in Baringo, Tana River and Migori, respectively. A significant association between the 2La chromosomal inversion and the kdr-east mutation was found. CONCLUSION: The significant association between the 2La inversion karyotype and kdr-east mutation suggests that pyrethroid resistant An. gambiae continue to rest indoors regardless of the presence of treated bed nets and residual sprays, a persistence further substantiated by studies documenting continued mosquito abundance indoors. Behavioural resistance by which Anopheles vectors prefer not to rest indoors may, therefore, not be a factor of concern in this study's malaria vector populations.


Asunto(s)
Anopheles/genética , Marcadores Genéticos , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Animales , Inversión Cromosómica , Kenia , Mosquitos Vectores/fisiología , Descanso
10.
Infect Dis Poverty ; 10(1): 135, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930459

RESUMEN

BACKGROUND: Long-lasting insecticide nets (LLINs) are a core malaria intervention. LLINs should retain efficacy against mosquito vectors for a minimum of three years. Efficacy and durability of Olyset® Plus, a permethrin and piperonyl butoxide (PBO) treated LLIN, was evaluated versus permethrin treated Olyset® Net. In the absence of WHO guidelines of how to evaluate PBO nets, and considering the manufacturer's product claim, Olyset® Plus was evaluated as a pyrethroid LLIN. METHODS: This was a household randomized controlled trial in a malaria endemic rice cultivation zone of Kirinyaga County, Kenya between 2014 and 2017. Cone bioassays and tunnel tests were done against Anopheles gambiae Kisumu. The chemical content, fabric integrity and LLIN survivorship were monitored. Comparisons between nets were tested for significance using the Chi-square test. Exact binomial distribution with 95% confidence intervals (95% CI) was used for percentages. The WHO efficacy criteria used were ≥ 95% knockdown and/or ≥ 80% mortality rate in cone bioassays and ≥ 80% mortality and/or ≥ 90% blood-feeding inhibition in tunnel tests. RESULTS: At 36 months, Olyset® Plus lost 52% permethrin and 87% PBO content; Olyset® Net lost 24% permethrin. Over 80% of Olyset® Plus and Olyset® Net passed the WHO efficacy criteria for LLINs up to 18 and 12 months, respectively. At month 36, 91.2% Olyset® Plus and 86.4% Olyset® Net survived, while 72% and 63% developed at least one hole. The proportionate Hole Index (pHI) values representing nets in good, serviceable and torn condition were 49.6%, 27.1% and 23.2%, respectively for Olyset® Plus, and 44.9%, 32.8% and 22.2%, respectively for Olyset® Net but were not significantly different. CONCLUSIONS: Olyset® Plus retained efficacy above or close to the WHO efficacy criteria for about 2 years than Olyset® Net (1-1.5 years). Both nets did not meet the 3-year WHO efficacy criteria, and showed little attrition, comparable physical durability and survivorship, with 50% of Olyset® Plus having good and serviceable condition after 3 years. Better community education on appropriate use and upkeep of LLINs is essential to ensure effectiveness of LLIN based malaria interventions.


Asunto(s)
Insecticidas , Permetrina , Kenia , Butóxido de Piperonilo/farmacología
11.
BMC Ecol Evol ; 21(1): 188, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635056

RESUMEN

BACKGROUND: Industrial wastewater is a human health hazard upon exposure. Aquatic organisms in contaminated wastewater may accumulate the toxic elements with time. Human population living in informal settlements in Nairobi industrial area risk exposure to such toxic elements. Biomonitoring using aquatic organisms in open drainage channels can be key in metal exposure assessment. Levels of Mercury (Hg), Lead (Pb), Chromium (Cr), Cadmium (Cd), Thallium (Tl), and Nickel (Ni) were established in samples of wastewater, filamentous green algae (Spirogyra) and mosquitoes obtained from open drainage channels in Nairobi industrial area, Kenya. RESULTS: Pb, Cr, & Ni levels ranged from 3.08 to 15.31 µg/l while Tl, Hg, & Cd ranged from 0.05 to 0.12 µg/l in wastewater. The Pb, Cr, Ni, & Cd levels were above WHO, Kenya & US EPA limits for wastewater but Hg was not. Pb, Cr, Tl, & Ni levels in assorted field mosquitoes were 1.3-2.4 times higher than in assorted laboratory-reared mosquitoes. Hg & Cd concentrations in laboratory-reared mosquitoes (0.26 mg/kg & 1.8 mg/kg respectively) were higher than in field mosquitoes (0.048 mg/kg & 0.12 mg/kg respectively). The levels of Pb, Cr, & Ni were distinctively higher in field mosquito samples than in wastewater samples from the same site. Pb, Cr, Ni, Cd & Hg levels in green filamentous Spirogyra algae were 110.62, 29.75, 14.45, 0.44, & 0.057 mg/kg respectively. Correlation for Pb & Hg (r (2) = 0.957; P < 0.05); Cd & Cr (r (2) = 0.985; P < 0.05) in algae samples was noted. The metal concentrations in the samples analyzed were highest in filamentous green algae and least in wastewater. CONCLUSION: Wastewater, mosquitoes, and filamentous green algae from open drainage channels and immediate vicinity, in Nairobi industrial area (Kenya) contained Hg, Pb, Cr, Cd, Tl, and Ni. Mosquitoes in urban areas and filamentous green algae in open drainage channels can play a role of metal biomonitoring in wastewater. The potential of urban mosquitoes transferring heavy metals to human population from the contaminated wastewater should be investigated.


Asunto(s)
Chlorophyta , Culicidae , Metales Pesados , Animales , Monitoreo Biológico , Drenaje , Humanos , Kenia , Metales Pesados/análisis
12.
BMC Public Health ; 21(1): 856, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941135

RESUMEN

BACKGROUND: Vector control is an essential component in prevention and control of malaria in malaria endemic areas. Insecticide treated nets is one of the standard tools recommended for malaria vector control. The objective of the study was to determine physical integrity and insecticidal potency of long-lasting insecticidal nets (LLINs) used in control of malaria vector in Kirinyaga County, Kenya. METHOD: The study targeted households in an area which had received LLINs during mass net distribution in 2016 from Ministry of Health. A total of 420 households were sampled using systematic sampling method, where the household heads consented to participate in the study. A semi-structured questionnaire was administered to assess care and use while physical examination was used to determine integrity. Chemical concentration was determined by gas chromatography mass spectroscopy (GC-MS). Data analysis was done using Statistical Package for Social Sciences (SPSS) version 19. RESULTS: After 18 months of use, 96.9% (95% CI: 95.2-98.6%) of the distributed nets were still available. Regarding net utilization, 94.1% of household heads reported sleeping under an LLIN the previous night. After physical examination, 49.9% (95% CI: 43-52.8%) of the bed nets had at least one hole. The median number of holes of any size was 2[interquartile range (IQR) 1-4], and most holes were located on the lower part of the nets, [median 3 (IQR 2-5)]. Only 15% of the nets with holes had been repaired. The median concentration for α-cypermethrin was 7.15 mg/m2 (IQR 4.25-15.31) and 0.00 mg/g (IQR 0.00-1.99) for permethrin. Based on pHI, Chi-square test varied significantly with the manufacturer (X (6, N = 389) = 29.14, p = 0.04). There was no significant difference between nets with different number of washes (X2(2) = 4.55, p = 0.103). CONCLUSION: More than three-quarters of the nets supplied had survived and insecticidal potency was adequate in vector control. Standard procedure for field evaluation of surface insecticidal content available to a mosquito after landing on a net to rest is recommended.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Animales , Humanos , Kenia , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores
13.
Sci Rep ; 10(1): 11439, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32632159

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Rep ; 10(1): 8434, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439896

RESUMEN

Levels of Mercury (Hg), Lead (Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni) & Thallium (Tl) were established in wastewater & soil samples obtained from 8 sites in open drainage channels at Nairobi industrial area, Kenya. Ultra-trace inductively coupled plasma mass spectroscopy (ICP-MS) was used for metal analysis. Temperature, pH & turbidity of wastewater ranged from 16.75 to 26.05 °C; 7.28 to 8.78; 160.33 to 544.69 ppm respectively and within World Health Organization (WHO) allowable limits. Wastewater conductivities in 4 sites ranged from 770 to 1074 µS/cm and above WHO limits at 25 °C. The mean concentrations of the metals in wastewater ranged from 0.0001 to 0.015 ppm in an ascending order of Tl

Asunto(s)
Agua Potable/química , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Restauración y Remediación Ambiental/métodos , Kenia , Metales Pesados/toxicidad , Espectrofotometría Atómica , Purificación del Agua/métodos
15.
J Med Chem ; 61(23): 10545-10557, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30339371

RESUMEN

Resistance development in insects significantly threatens the important benefits obtained by insecticide usage in vector control of disease-transmitting insects. Discovery of new chemical entities with insecticidal activity is highly desired in order to develop new insecticide candidates. Here, we present the design, synthesis, and biological evaluation of phenoxyacetamide-based inhibitors of the essential enzyme acetylcholinesterase 1 (AChE1). AChE1 is a validated insecticide target to control mosquito vectors of, e.g., malaria, dengue, and Zika virus infections. The inhibitors combine a mosquito versus human AChE selectivity with a high potency also for the resistance-conferring mutation G122S; two properties that have proven challenging to combine in a single compound. Structure-activity relationship analyses and molecular dynamics simulations of inhibitor-protein complexes have provided insights that elucidate the molecular basis for these properties. We also show that the inhibitors demonstrate in vivo insecticidal activity on disease-transmitting mosquitoes. Our findings support the concept of noncovalent, selective, and resistance-breaking inhibitors of AChE1 as a promising approach for future insecticide development.


Asunto(s)
Acetilcolinesterasa/metabolismo , Aedes/enzimología , Inhibidores de la Colinesterasa/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Acetamidas/química , Acetamidas/farmacología , Acetilcolinesterasa/química , Animales , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Conformación Proteica
16.
Lancet Infect Dis ; 18(6): 640-649, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29650424

RESUMEN

BACKGROUND: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. METHODS: This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. FINDINGS: Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin). INTERPRETATION: Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. FUNDING: Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.


Asunto(s)
Culicidae , Mosquiteros Tratados con Insecticida , Malaria , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Adolescente , Animales , Niño , Preescolar , Humanos , Lactante , África del Sur del Sahara/epidemiología , Estudios de Cohortes , Culicidae/efectos de los fármacos , India/epidemiología , Resistencia a los Insecticidas , Internacionalidad , Malaria/epidemiología , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Estudios Prospectivos , Piretrinas/farmacología , Organización Mundial de la Salud
17.
Malar J ; 17(1): 3, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304805

RESUMEN

BACKGROUND: The strategy for malaria vector control in the context of reducing malaria morbidity and mortality has been the scale-up of long-lasting insecticidal nets to universal coverage and indoor residual spraying. This has led to significant decline in malaria transmission. However, these vector control strategies rely on insecticides which are threatened by insecticide resistance. In this study the status of pyrethroid resistance in malaria vectors and it's implication in malaria transmission at the Kenyan Coast was investigated. RESULTS: Using World Health Organization diagnostic bioassay, levels of phenotypic resistance to permethrin and deltamethrin was determined. Anopheles arabiensis showed high resistance to pyrethroids while Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus showed low resistance and susceptibility, respectively. Anopheles gambiae sensu lato (s.l.) mosquitoes were further genotyped for L1014S and L1014F kdr mutation by real time PCR. An allele frequency of 1.33% for L1014S with no L1014F was detected. To evaluate the implication of pyrethroid resistance on malaria transmission, Plasmodium falciparum infection rates in field collected adult mosquitoes was determined using enzyme linked immunosorbent assay and further, the behaviour of the vectors was assessed by comparing indoor and outdoor proportions of mosquitoes collected. Sporozoite infection rate was observed at 4.94 and 2.60% in An. funestus s.l. and An. gambiae s.l., respectively. A higher density of malaria vectors was collected outdoor and this also corresponded with high Plasmodium infection rates outdoor. CONCLUSIONS: This study showed phenotypic resistance to pyrethroids and low frequency of L1014S kdr mutation in An. gambiae s.l. The occurrence of phenotypic resistance with low levels of kdr frequencies highlights the need to investigate other mechanisms of resistance. Despite being susceptible to pyrethroids An. funestus s.l. could be driving malaria infections in the area.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Nitrilos/farmacología , Permetrina/farmacología , Piretrinas/farmacología , Animales , Anopheles/genética , Anopheles/parasitología , Bioensayo , Ensayo de Inmunoadsorción Enzimática , Femenino , Frecuencia de los Genes , Genotipo , Técnicas de Genotipaje , Kenia , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Prevalencia
18.
East Afr Health Res J ; 2(1): 58-66, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-34308176

RESUMEN

BACKGROUND: Lymphatic filariasis (LF) is a parasitic infectious disease that is transmitted by several species of mosquitoes. Diagnosis of LF is done in both human hosts and vectors. Effective mosquito collection method(s) is/are required in order to collect large numbers of mosquitoes with high chances of infectivity. METHODS: In this study, 3 mosquito sampling methods were compared. Mosquitoes were collected from 6 randomly selected villages of Tana River County, Kenya. The effectiveness of CDC light traps, gravid traps, and pyrethrum spray methods in collecting mosquitoes were compared. Mosquitoes were morphologically identified into genera and species level, and mosquito dissection was done in search of microfilariae larvae to assess the infection and infectivity rates. Data was analysed by SPSS version 15.0 and analysis of variance (ANOVA). RESULTS: A total of 1632 female mosquitoes were collected belonging to 5 mosquito genera: Culex, Anopheles, Aedes, Mansonia, and Ficalbia. The most abundant mosquito genera was Culex. Light traps obtained the most blood-fed mosquitoes. CONCLUSION: Light traps were found to be the most effective method of mosquito collection in terms of high catches and high infectivities.

19.
Parasit Vectors ; 10(1): 429, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28927428

RESUMEN

BACKGROUND: Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS: Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS: Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS: The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/parasitología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/parasitología , Animales , Anopheles/genética , Carbamatos/farmacología , Geografía , Humanos , Kenia/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/genética , Mutación , Organofosfatos/farmacología , Piretrinas/farmacología
20.
Eur J Med Chem ; 134: 415-427, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28433681

RESUMEN

Vector control of disease-transmitting mosquitoes by insecticides has a central role in reducing the number of parasitic- and viral infection cases. The currently used insecticides are efficient, but safety concerns and the development of insecticide-resistant mosquito strains warrant the search for alternative compound classes for vector control. Here, we have designed and synthesized thiourea-based compounds as non-covalent inhibitors of acetylcholinesterase 1 (AChE1) from the mosquitoes Anopheles gambiae (An. gambiae) and Aedes aegypti (Ae. aegypti), as well as a naturally occurring resistant-conferring mutant. The N-aryl-N'-ethyleneaminothioureas proved to be inhibitors of AChE1; the most efficient one showed submicromolar potency. Importantly, the inhibitors exhibited selectivity over the human AChE (hAChE), which is desirable for new insecticides. The structure-activity relationship (SAR) analysis of the thioureas revealed that small changes in the chemical structure had a large effect on inhibition capacity. The thioureas showed to have different SAR when inhibiting AChE1 and hAChE, respectively, enabling an investigation of structure-selectivity relationships. Furthermore, insecticidal activity was demonstrated using adult and larvae An. gambiae and Ae. aegypti mosquitoes.


Asunto(s)
Aedes/efectos de los fármacos , Anopheles/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Insectos Vectores/efectos de los fármacos , Insecticidas/toxicidad , Tiourea/toxicidad , Acetilcolinesterasa/metabolismo , Aedes/enzimología , Animales , Anopheles/enzimología , Inhibidores de la Colinesterasa/química , Femenino , Humanos , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Insectos Vectores/enzimología , Insecticidas/química , Larva/efectos de los fármacos , Larva/enzimología , Tiourea/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...