Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 5764, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388085

RESUMEN

Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previous reports showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. This paper reports quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is unavailable, binding poses were predicted by molecular docking of MMP1 with aSyn using ClusPro. MMP1 dynamics were simulated using predicted binding poses and compared with the experimental interdomain dynamics to identify an appropriate pose. The selected aSyn-MMP1 binding pose near aSyn residue K45 was simulated and analyzed to define conformational changes at the catalytic site. Allosteric residues in aSyn-bound MMP1 exhibiting strong correlations with the catalytic motif residues were compared with allosteric residues in free MMP1, and aSyn-specific residues were identified. The allosteric residues in aSyn-bound MMP1 are K281, T283, G292, G327, L328, E329, R337, F343, G345, N346, Y348, G353, Q354, D363, Y365, S366, S367, F368, P371, R372, V374, K375, A379, F391, A394, R399, M414, F419, V426, and C466. Shannon entropy was defined to quantify MMP1 dynamics. Virtual screening was performed against a site on selected aSyn-MMP1 binding poses, which showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for potential substrate-specific control of MMP1 activity in the future. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.


Asunto(s)
Metaloproteinasa 1 de la Matriz , alfa-Sinucleína , Dominio Catalítico , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
2.
Heliyon ; 7(1): e05874, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33490665

RESUMEN

Research has implicated alpha-synuclein (aSyn) in pathological protein aggregation observed in almost all patients with Parkinson's disease and more than 50% of patients with Alzheimer's disease. An easy and inexpensive method of purifying aSyn and developing an in vitro model system of Lewy body formation would enhance basic biomedical research. We report aSyn purification technique that leverages the amyloidogenic property of aSyn suitable for purifying monomeric aSyn without chromatography and denaturing agents. We expressed full-length and untagged aSyn in Rosetta(DE3) pLysS and purified ~60 µg of aSyn from 500 mL culture within 24 h. After IPTG-induced expression of aSyn in E. coli, we disrupted the cells with a sonicator. We centrifuged the cell lysate in a 15 mL tube, which leads to aSyn-induced aggregation of native E. coli proteins. After removing aggregates, centrifugation in a 30 kDa cut-off filter followed by a 10 kDa cut-off filter led to purified water-soluble aSyn. The identity of aSyn was confirmed by Western blot using anti-aSyn antibody and Edman sequencing. Its mass was determined to be 14.6 kDa using a MALDI TOF-MS mass spectrometer. The majority of aSyn led to water-suspended (as opposed to precipitated) aggregation of E. coli proteins with visible fibrous structures. The broad-spectrum binding and amyloidogenic property of aSyn is thus not only useful for inexpensive aSyn production for diverse applications, but it also expands studying its possible roles in human physiology. The aggregate of E. coli proteins induced by aSyn during the purification process may serve as a Lewy body model.

3.
Sci Rep ; 10(1): 20615, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244162

RESUMEN

The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.


Asunto(s)
Metaloproteinasa 1 de la Matriz/metabolismo , Dominios Proteicos/fisiología , Catálisis , Dominio Catalítico/fisiología , Escherichia coli/metabolismo , Fibrinógeno/metabolismo , Hemopexina/metabolismo , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...