Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979037

RESUMEN

Streptomyces are factories of antimicrobial secondary metabolites. We isolated a Streptomyces species associated with the Pelargonium graveolens rhizosphere. Its total metabolic extract exhibited potent antibacterial and antifungal properties against all the tested pathogenic microbes. Whole genome sequencing and genome analyses were performed to take a look at its main characteristics and to reconstruct the metabolic pathways that can be associated with biotechnologically useful traits. AntiSMASH was used to identify the secondary metabolite gene clusters. In addition, we searched for known genes associated with plant growth-promoting characteristics. Finally, a comparative and pan-genome analysis with three closely related genomes was conducted. It was identified as Streptomyces vinaceusdrappus strain AC-40. Genome mining indicated the presence of several secondary metabolite gene clusters. Some of them are identical or homologs to gene clusters of known metabolites with antimicrobial, antioxidant, and other bioactivities. It also showed the presence of several genes related to plant growth promotion traits. The comparative genome analysis indicated that at least five of these gene clusters are highly conserved through rochei group genomes. The genotypic and phenotypic characteristics of S. vinaceusdrappus strain AC-40 indicate that it is a promising source of beneficial secondary metabolites with pharmaceutical and biotechnological applications.

2.
Mar Genomics ; 61: 100920, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34973527

RESUMEN

Red Sea marine sponges (phylum Porifera) and associated microorganisms harbor a wide range of microorganisms, which are considered an essential source of bioactive products. In this study, we screened both the crude extracts of Red Sea marine sponges and their associated bacterial extract for antimicrobial activity and antiviral activity. Molecular characterization of bioactive producers was performed using16S rRNA sequencing, in addition to metagenomic analysis of three representative sponges utilizing the 16S rRNA gene V3-V4 region sequencing in two different seasons. Twelve samples were collected from five different sponge species by scuba diving, and all the crude extracts of sponges showed antimicrobial activity except Negombata corticata. Moreover, 84 out of 110 bacterial isolates extracts demonstrated antimicrobial activity against at least one tested microorganism. These results revealed the bioactivity and biodiversity of the Red Sea marine invertebrates-associated bacteria. It was found that the bioactive isolates belong to several bacterial groups. The bacterial communities of Negombata magnifica, Negombata corticata, and Siphonochalina siphonella were shown with great diversity and differences in the bacterial percentage, diversity, and unique community composition at different seasons in each sponge species. Unique microenvironment for each sponge species may be linked to the production of specific bioactive product.


Asunto(s)
Microbiota , Poríferos , Animales , Egipto , Océano Índico , ARN Ribosómico 16S/genética
3.
Cells ; 10(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34831237

RESUMEN

During the current era of the COVID-19 pandemic, the dissemination of Mucorales has been reported globally, with elevated rates of infection in India, and because of the high rate of mortality and morbidity, designing an effective vaccine against mucormycosis is a major health priority, especially for immunocompromised patients. In the current study, we studied shared Mucorales proteins, which have been reported as virulence factors, and after analysis of several virulent proteins for their antigenicity and subcellular localization, we selected spore coat (CotH) and serine protease (SP) proteins as the targets of epitope mapping. The current study proposes a vaccine constructed based on top-ranking cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes from filtered proteins. In addition to the selected epitopes, ß-defensins adjuvant and PADRE peptide were included in the constructed vaccine to improve the stimulated immune response. Computational tools were used to estimate the physicochemical and immunological features of the proposed vaccine and validate its binding with TLR-2, where the output data of these assessments potentiate the probability of the constructed vaccine to stimulate a specific immune response against mucormycosis. Here, we demonstrate the approach of potential vaccine construction and assessment through computational tools, and to the best of our knowledge, this is the first study of a proposed vaccine against mucormycosis based on the immunoinformatics approach.


Asunto(s)
Vacunas Fúngicas/química , Vacunas Fúngicas/inmunología , Mucormicosis/prevención & control , Rhizopus/inmunología , Adyuvantes Inmunológicos , Antígenos Fúngicos/inmunología , Biología Computacional , Reacciones Cruzadas , Mapeo Epitopo , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Humanos , Modelos Moleculares , Mucorales/inmunología , Conformación Proteica , Receptor Toll-Like 2/química , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...