Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Mater Au ; 3(4): 371-385, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38090130

RESUMEN

Phonons play a crucial role in the thermodynamic and transport properties of solid materials. Nevertheless, rather little is known about phonons in organic semiconductors. Thus, we employ highly reliable quantum mechanical calculations for studying the phonons in the α-polymorph of quinacridone. This material is particularly interesting, as it has highly anisotropic properties with distinctly different bonding types (H-bonding, π-stacking, and dispersion interactions) in different spatial directions. By calculating the overlaps of modes in molecular quinacridone and the α-polymorph, we associate Γ-point phonons with molecular vibrations to get a first impression of the impact of the crystalline environment. The situation becomes considerably more complex when analyzing phonons in the entire 1st Brillouin zone, where, due to the low symmetry of α-quinacridone, a multitude of avoided band crossings occur. At these, the character of the phonon modes typically switches, as can be inferred from mode participation ratios and mode longitudinalities. Notably, avoided crossings are observed not only as a function of the length but also as a function of the direction of the phonon wave vector. Analyzing these avoided crossings reveals how it is possible that the highest frequency acoustic band is always the one with the largest longitudinality, although longitudinal phonons in different crystalline directions are characterized by fundamentally different molecular displacements. The multiple avoided crossings also give rise to a particularly complex angular dependence of the group velocities, but combining the insights from the various studied quantities still allows drawing general conclusions, e.g., on the relative energetics of longitudinal vs transverse deformations (i.e., compressions and expansions vs slips of neighboring molecules). They also reveal how phonon transport in α-quinacridone is impacted by the reinforcing H-bonds and by π-stacking interactions (resulting from a complex superposition of van der Waals, charge penetration, and exchange repulsion).

2.
Nanomaterials (Basel) ; 12(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807978

RESUMEN

Metal-organic frameworks (MOFs) are a highly versatile group of porous materials suitable for a broad range of applications, which often crucially depend on the MOFs' heat transport properties. Nevertheless, detailed relationships between the chemical structure of MOFs and their thermal conductivities are still largely missing. To lay the foundations for developing such relationships, we performed non-equilibrium molecular dynamics simulations to analyze heat transport in a selected set of materials. In particular, we focus on the impact of organic linkers, the inorganic nodes and the interfaces between them. To obtain reliable data, great care was taken to generate and thoroughly benchmark system-specific force fields building on ab-initio-based reference data. To systematically separate the different factors arising from the complex structures of MOF, we also studied a series of suitably designed model systems. Notably, besides the expected trend that longer linkers lead to a reduction in thermal conductivity due to an increase in porosity, they also cause an increase in the interface resistance between the different building blocks of the MOFs. This is relevant insofar as the interface resistance dominates the total thermal resistance of the MOF. Employing suitably designed model systems, it can be shown that this dominance of the interface resistance is not the consequence of the specific, potentially weak, chemical interactions between nodes and linkers. Rather, it is inherent to the framework structures of the MOFs. These findings improve our understanding of heat transport in MOFs and will help in tailoring the thermal conductivities of MOFs for specific applications.

3.
J Mater Chem C Mater ; 10(7): 2532-2543, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35310857

RESUMEN

By studying the low-frequency phonon bands of a series of crystalline acenes, this article lays the foundation for the development of structure-property relationships for phonons in organic semiconductors. Combining state-of-the art quantum-mechanical simulations with simple classical models, we explain how and why phonon frequencies and group velocities do or do not change when varying the molecular and crystal structures of the materials.

4.
Nanoscale ; 13(20): 9339-9353, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33998630

RESUMEN

Covalent organic frameworks (COFs) have attracted significant attention due to their chemical versatility combined with a significant number of potential applications. Of particular interest are two-dimensional COFs, where the organic building units are linked by covalent bonds within a plane. Most properties of these COFs are determined by the relative arrangement of neighboring layers. These are typically found to be laterally displaced, which, for example, reduces the electronic coupling between the layers. In the present contribution we use dispersion-corrected density-functional theory to elucidate the origin of that displacement, showing that the common notion that the displacement is a consequence of electrostatic repulsions of polar building blocks can be misleading. For the representative case of COF-1 we find that electrostatic and van der Waals interactions would, actually, favor a cofacial arrangement of the layers and that Pauli repulsion is the crucial factor causing the serrated AA-stacking. A more in-depth analysis of the electrostatic contribution reveals that the "classical" Coulomb repulsion between the boroxine building blocks of COF-1 suggested by chemical intuition does exist, but is overcompensated by attractive effects due to charge-penetration in the phenylene units. The situation becomes more involved, when additionally allowing the interlayer distance to relax for each displacement, as then the different distance-dependences of the various types of interactions come into play. The overall behavior calculated for COF-1 is recovered for several additional COFs with differently sized π-systems and topologies, implying that the presented results are of more general relevance.

5.
J Chem Theory Comput ; 16(4): 2716-2735, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32155063

RESUMEN

Phonons crucially impact a variety of properties of organic semiconductor materials. For instance, charge- and heat transport depend on low-frequency phonons, while for other properties, such as the free energy, especially high-frequency phonons count. For all these quantities one needs to know the entire phonon band structure, whose simulation becomes exceedingly expensive for more complex systems when using methods like dispersion-corrected density functional theory (DFT). Therefore, in the present contribution we evaluate the performance of more approximate methodologies, including density functional tight binding (DFTB) and a pool of force fields (FF) of varying complexity and sophistication. Beyond merely comparing phonon band structures, we also critically evaluate to what extent derived quantities, like temperature-dependent heat capacities, mean squared thermal displacements, and temperature-dependent free energies are impacted by shortcomings in the description of the phonon bands. As a benchmark system, we choose (deuterated) naphthalene, as the only organic semiconductor material for which to date experimental phonon band structures are available in the literature. Overall, the best performance among the approximate methodologies is observed for a system-specifically parametrized second-generation force field. Interestingly, in the low-frequency regime also force fields with a rather simplistic model for the bonding interactions (like the General Amber Force Field) perform rather well. As far as the tested DFTB parametrization is concerned, we obtain a significant underestimation of the unit-cell volume resulting in a pronounced overestimation of the phonon energies in the low-frequency region. This cannot be mended by relying on the DFT-calculated unit cell, since with this unit cell the DFTB phonon frequencies significantly underestimate the experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...