Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687820

RESUMEN

Mutations in the human AAA-ATPase VPS4 isoform, VPS4A, cause severe neurodevelopmental defects and congenital dyserythropoietic anemia (CDA). VPS4 is a crucial component of the endosomal sorting complex required for transport (ESCRT) system, which drives membrane remodeling in numerous cellular processes, including receptor degradation, cell division, and neural pruning. Notably, while most organisms encode for a single VPS4 gene, human cells have 2 VPS4 paralogs, namely VPS4A and VPS4B, but the functional differences between these paralogs is mostly unknown. Here, we set out to investigate the role of the human VPS4 paralogs in cytokinetic abscission using a series of knockout cell lines. We found that VPS4A and VPS4B hold both overlapping and distinct roles in abscission. VPS4A depletion resulted in a more severe abscission delay than VPS4B and was found to be involved in earlier stages of abscission. Moreover, VPS4A and a monomeric-locked VPS4A mutant bound the abscission checkpoint proteins CHMP4C and ANCHR, while VPS4B did not, indicating a regulatory role for the VPS4A isoform in abscission. Depletion of VTA1, a co-factor of VPS4, disrupted VPS4A-ANCHR interactions and accelerated abscission, suggesting that VTA1 is also involved in the abscission regulation. Our findings reveal a dual role for VPS4A in abscission, one that is canonical and can be compensated by VPS4B, and another that is regulatory and may be delivered by its monomeric form. These observations provide a potential mechanistic explanation for the neurodevelopmental defects and other related disorders reported in VPS4A-mutated patients with a fully functional VPS4B paralog.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte , ATPasas de Translocación de Protón Vacuolares , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Células HeLa , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
3.
Transl Neurodegener ; 11(1): 58, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578022

RESUMEN

BACKGROUND: Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS: To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS: In neuronal cultures, amyloid-beta (Aß)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aß plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aß-plaque load. CONCLUSIONS: The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteínas Mitocondriales , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo
4.
EBioMedicine ; 43: 424-434, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31085101

RESUMEN

BACKGROUND: The delivery of therapeutic proteins to selected sites within the central nervous system (CNS) parenchyma is a major challenge in the treatment of various neurodegenerative disorders. As brain-derived neurotrophic factor (BDNF) is reduced in the brain of people with Alzheimer's disease (AD) and its administration has shown promising therapeutic effects in mouse model of the disease, we generated a novel platform for T cell-based BDNF delivery into the brain parenchyma. METHODS: We generated amyloid beta-protein (Aß)-specific CD4 T cells (Aß-T cells), genetically engineered to express BDNF, and injected them intracerebroventricularly into the 5XFAD mouse model of AD. FINDINGS: The BDNF-secreting Aß-T cells migrated efficiently to amyloid plaques, where they significantly increased the levels of BDNF, its receptor TrkB, and various synaptic proteins known to be reduced in AD. Furthermore, the injected mice demonstrated reduced levels of beta-secretase 1 (BACE1)-a protease essential in the cleavage process of the amyloid precursor protein-and ameliorated amyloid pathology and inflammation within the brain parenchyma. INTERPRETATION: A T cell-based delivery of proteins into the brain can serve as a platform to modulate neurotoxic inflammation and to promote neuronal repair in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Biomarcadores , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Linfocitos T CD4-Positivos/efectos de los fármacos , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Células Piramidales/inmunología , Células Piramidales/metabolismo , Células Piramidales/patología , Especificidad del Receptor de Antígeno de Linfocitos T , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA