Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37989525

RESUMEN

The genome is organized in functional compartments and structural domains at the sub-megabase scale. How within these domains interactions between numerous cis-acting enhancers and promoters regulate transcription remains an open question. Here, we determined chromatin folding and composition over several hundred kb around estrogen-responsive genes in human breast cancer cell lines after hormone stimulation. Modeling of 5C data at 1.8 kb resolution was combined with quantitative 3D analysis of multicolor FISH measurements at 100 nm resolution and integrated with ChIP-seq data on transcription factor binding and histone modifications. We found that rapid estradiol induction of the progesterone gene expression occurs in the context of preexisting, cell type-specific chromosomal architectures encompassing the 90 kb progesterone gene coding region and an enhancer-spiked 5' 300 kb upstream genomic region. In response to estradiol, interactions between estrogen receptor α (ERα) bound regulatory elements are reinforced. Whereas initial enhancer-gene contacts coincide with RNA Pol 2 binding and transcription initiation, sustained hormone stimulation promotes ERα accumulation creating a regulatory hub stimulating transcript synthesis. In addition to implications for estrogen receptor signaling, we uncover that preestablished chromatin architectures efficiently regulate gene expression upon stimulation without the need for de novo extensive rewiring of long-range chromatin interactions.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Humanos , Femenino , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Progesterona , Elementos de Facilitación Genéticos/genética , Cromatina/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estradiol/farmacología
2.
Dev Cell ; 58(20): 2181-2193.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37586367

RESUMEN

Understanding morphogenesis strongly relies on the characterization of tissue topology and mechanical properties deduced from imaging data. The development of new imaging techniques offers the possibility to go beyond the analysis of mostly flat surfaces and image and analyze complex tissue organization in depth. An important bottleneck in this field is the need to analyze imaging datasets and extract quantifications not only of cell and tissue morphology but also of the cytoskeletal network's organization in an automatized way. Here, we describe a method, called DISSECT, for DisPerSE (Discrete Persistent Structure Extractor)-based Segmentation and Exploration of Cells and Tissues, that offers the opportunity to extract automatically, in strongly deformed epithelia, a precise characterization of the spatial organization of a given cytoskeletal network combined with morphological quantifications in highly remodeled three-dimensional (3D) epithelial tissues. We believe that this method, applied here to Drosophila tissues, will be of general interest in the expanding field of morphogenesis and tissue biomechanics.


Asunto(s)
Drosophila , Imagenología Tridimensional , Animales , Epitelio/metabolismo , Morfogénesis , Imagenología Tridimensional/métodos
3.
BMC Mol Cell Biol ; 22(1): 45, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521351

RESUMEN

BACKGROUND: The crucial role of the major histocompatibility complex (MHC) for the immune response to infectious diseases is well-known, but no information is available on the 3D nuclear organization of this gene-dense region in immune cells, whereas nuclear architecture is known to play an essential role on genome function regulation. We analyzed the spatial arrangement of the three MHC regions (class I, III and II) in macrophages using 3D-FISH. Since this complex presents major differences in humans and pigs with, notably, the presence of the centromere between class III and class II regions in pigs, the analysis was implemented in both species to determine the impact of this organization on the 3D conformation of the MHC. The expression level of the three genes selected to represent each MHC region was assessed by quantitative real-time PCR. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen modifies their expression level and their 3D organization. RESULTS: While the three MHC regions occupy an intermediate radial position in porcine macrophages, the class I region was clearly more peripheral in humans. The BAC center-to-center distances allowed us to propose a 3D nuclear organization of the MHC in each species. LPS/IFNγ activation induces a significant decompaction of the chromatin between class I and class III regions in pigs and between class I and class II regions in humans. We detected a strong overexpression of TNFα (class III region) in both species. Moreover, a single nucleus analysis revealed that the two alleles can have either the same or a different compaction pattern. In addition, macrophage activation leads to an increase in alleles that present a decompacted pattern in humans and pigs. CONCLUSIONS: The data presented demonstrate that: (i) the MHC harbors a different 3D organization in humans and pigs; (ii) LPS/IFNγ activation induces chromatin decompaction, but it is not the same area affected in the two species. These findings were supported by the application of an original computation method based on the geometrical distribution of the three target genes. Finally, the position of the centromere inside the swine MHC could influence chromatin reorganization during the activation process.


Asunto(s)
Macrófagos , Complejo Mayor de Histocompatibilidad , Animales , Núcleo Celular , Centrómero , Humanos , Lipopolisacáridos/farmacología , Complejo Mayor de Histocompatibilidad/genética , Porcinos
4.
Nucleic Acids Res ; 49(12): 6982-6995, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161591

RESUMEN

REP, diverse palindromic DNA sequences found at high copy number in many bacterial genomes, have been attributed important roles in cell physiology but their dissemination mechanisms are poorly understood. They might represent non-autonomous transposable elements mobilizable by TnpAREP, the first prokaryotic domesticated transposase associated with REP. TnpAREP, fundamentally different from classical transposases, are members of the HuH superfamily and closely related to the transposases of the IS200/IS605 family. We previously showed that Escherichia coli TnpAREP processes cognate single stranded REP in vitro and that this activity requires the integrity of the REP structure, in particular imperfect palindromes interrupted by a bulge and preceded by a conserved DNA motif. A second group of REPs rather carry perfect palindromes, raising questions about how the latter are recognized by their cognate TnpAREP. To get insight into the importance of REP structural and sequence determinants in these two groups, we developed an in vitro activity assay coupled to a mutational analysis for three different TnpAREP/REP duos via a SELEX approach. We also tackled the question of how the cleavage site is selected. This study revealed that two TnpAREP groups have co-evolved with their cognate REPs and use different strategies to recognize their REP substrates.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Genoma Bacteriano , Secuencias Invertidas Repetidas , Transposasas/metabolismo , Escherichia coli/genética , Marinomonas/genética , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Técnica SELEX de Producción de Aptámeros , Stenotrophomonas maltophilia/genética
5.
J Struct Biol ; 208(2): 152-164, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449968

RESUMEN

Spatial organisation of chromosomes is a determinant of genome stability and is required for proper mitotic segregation. However, visualization of individual chromatids in living cells and quantification of their geometry, remains technically challenging. Here, we used live cell imaging to quantitate the three-dimensional conformation of yeast Saccharomyces cerevisiae ribosomal DNA (rDNA). rDNA is confined within the nucleolus and is composed of about 200 copies representing about 10% of the yeast genome. To fluorescently label rDNA in living cells, we generated a set of nucleolar proteins fused to GFP or made use of a tagged rDNA, in which lacO repetitions were inserted in each repeat unit. We could show that nucleolus is not modified in appearance, shape or size during interphase while rDNA is highly reorganized. Computationally tracing 3D rDNA paths allowed us to quantitatively assess rDNA size, shape and geometry. During interphase, rDNA was progressively reorganized from a zig-zag segmented line of small size (5,5 µm) to a long, homogeneous, line-like structure of 8,7 µm in metaphase. Most importantly, whatever the cell-cycle stage considered, rDNA fibre could be decomposed in subdomains, as previously suggested for 3D chromatin organisation. Finally, we could determine that spatial reorganisation of these subdomains and establishment of rDNA mitotic organisation is under the control of the cohesin complex.


Asunto(s)
Nucléolo Celular/metabolismo , ADN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , División Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN Ribosómico/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
6.
J Cell Sci ; 129(24): 4480-4495, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27831493

RESUMEN

How spatial organization of the genome depends on nuclear shape is unknown, mostly because accurate nuclear size and shape measurement is technically challenging. In large cell populations of the yeast Saccharomyces cerevisiae, we assessed the geometry (size and shape) of nuclei in three dimensions with a resolution of 30 nm. We improved an automated fluorescence localization method by implementing a post-acquisition correction of the spherical microscopic aberration along the z-axis, to detect the three dimensional (3D) positions of nuclear pore complexes (NPCs) in the nuclear envelope. Here, we used a method called NucQuant to accurately estimate the geometry of nuclei in 3D throughout the cell cycle. To increase the robustness of the statistics, we aggregated thousands of detected NPCs from a cell population in a single representation using the nucleolus or the spindle pole body (SPB) as references to align nuclei along the same axis. We could detect asymmetric changes of the nucleus associated with modification of nucleolar size. Stereotypical modification of the nucleus toward the nucleolus further confirmed the asymmetric properties of the nuclear envelope.


Asunto(s)
Ciclo Celular , Forma del Núcleo Celular , Microscopía Confocal/métodos , Saccharomycetales/citología , Carbono/farmacología , Ciclo Celular/efectos de los fármacos , Forma del Núcleo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Imagenología Tridimensional , Interfase/efectos de los fármacos , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/metabolismo
7.
PLoS Genet ; 12(7): e1006172, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27428258

RESUMEN

Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of the cell cycle.


Asunto(s)
Burkholderia cenocepacia/genética , Replicación del ADN , Genes Bacterianos , Replicón , Proteínas Bacterianas/genética , Ciclo Celular , Segregación Cromosómica , Cromosomas/ultraestructura , Cromosomas Bacterianos/metabolismo , Escherichia coli/genética , Eliminación de Gen , Genoma Bacteriano , Microscopía Fluorescente , Mutación , Plásmidos/metabolismo , Origen de Réplica , Análisis de Secuencia de ADN
8.
PLoS Comput Biol ; 11(6): e1004306, 2015 06.
Artículo en Inglés | MEDLINE | ID: mdl-26030148

RESUMEN

Inherently dynamic, chromosomes adopt many different conformations in response to DNA metabolism. Models of chromosome organization in the yeast nucleus obtained from genome-wide chromosome conformation data or biophysical simulations provide important insights into the average behavior but fail to reveal features from dynamic or transient events that are only visible in a fraction of cells at any given moment. We developed a method to determine chromosome conformation from relative positions of three fluorescently tagged DNA in living cells imaged in 3D. Cell type specific chromosome folding properties could be assigned based on positional combinations between three loci on yeast chromosome 3. We determined that the shorter left arm of chromosome 3 is extended in MATα cells, but can be crumpled in MATa cells. Furthermore, we implemented a new mathematical model that provides for the first time an estimate of the relative physical constraint of three linked loci related to cellular identity. Variations in this estimate allowed us to predict functional consequences from chromatin structural alterations in asf1 and recombination enhancer deletion mutant cells. The computational method is applicable to identify and characterize dynamic chromosome conformations in any cell type.


Asunto(s)
Estructuras Cromosómicas/química , Estructuras Cromosómicas/ultraestructura , Cromosomas Fúngicos/química , Cromosomas Fúngicos/ultraestructura , Modelos Genéticos , Saccharomyces cerevisiae/ultraestructura , Biología Computacional , Simulación por Computador , Sitios Genéticos , Conformación Molecular
9.
PLoS Pathog ; 9(9): e1003596, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039578

RESUMEN

Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA nuclease, a constitutively expressed virulence factor, is recruited during competence to play the key role of converting dsDNA into ssDNA for uptake. Here we use fluorescence microscopy to show that EndA is uniformly distributed in the membrane of noncompetent cells and relocalizes at midcell during competence. This recruitment requires the dsDNA receptor ComEA. We also show that under 'static' binding conditions, i.e., in cells impaired for uptake, EndA and ComEA colocalize at midcell, together with fluorescent end-labelled dsDNA (Cy3-dsDNA). We conclude that midcell clustering of EndA reflects its recruitment to the DNA uptake machinery rather than its sequestration away from this machinery to protect transforming DNA from extensive degradation. In contrast, a fraction of ComEA molecules were located at cell poles post-competence, suggesting the pole as the site of degradation of the dsDNA receptor. In uptake-proficient cells, we used Cy3-dsDNA molecules enabling expression of a GFP fusion upon chromosomal integration to identify transformed cells as GFP producers 60-70 min after initial contact between DNA and competent cells. Recording of images since initial cell-DNA contact allowed us to look back to the uptake period for these transformed cells. Cy3-DNA foci were thus detected at the cell surface 10-11 min post-initial contact, all exclusively found at midcell, strongly suggesting that active uptake of transforming DNA takes place at this position in pneumococci. We discuss how midcell uptake could influence homology search, and the likelihood that midcell uptake is characteristic of cocci and/or the growth phase-dependency of competence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Streptococcus pneumoniae/metabolismo , Transformación Bacteriana/fisiología , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN de Cadena Simple/genética , Endodesoxirribonucleasas/genética , Humanos , Proteínas de la Membrana/genética , Streptococcus pneumoniae/genética , Factores de Virulencia/genética
10.
J Cell Biol ; 202(2): 201-10, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23878273

RESUMEN

Chromosomes architecture is viewed as a key component of gene regulation, but principles of chromosomal folding remain elusive. Here we used high-throughput live cell microscopy to characterize the conformation and dynamics of the longest chromosome of Saccharomyces cerevisiae (XII). Chromosome XII carries the ribosomal DNA (rDNA) that defines the nucleolus, a major hallmark of nuclear organization. We determined intranuclear positions of 15 loci distributed every ~100 kb along the chromosome, and investigated their motion over broad time scales (0.2-400 s). Loci positions and motions, except for the rDNA, were consistent with a computational model of chromosomes based on tethered polymers and with the Rouse model from polymer physics, respectively. Furthermore, rapamycin-dependent transcriptional reprogramming of the genome only marginally affected the chromosome XII internal large-scale organization. Our comprehensive investigation of chromosome XII is thus in agreement with recent studies and models in which long-range architecture is largely determined by the physical principles of tethered polymers and volume exclusion.


Asunto(s)
Cromatina/genética , Cromosomas Fúngicos/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Mapeo Cromosómico , Cromosomas Fúngicos/metabolismo , Simulación por Computador , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Sitios Genéticos , Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae/metabolismo , Sirolimus , Telómero/genética , Telómero/metabolismo , Imagen de Lapso de Tiempo , Transcripción Genética
11.
J Biomech Eng ; 129(4): 523-30, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17655473

RESUMEN

A precise characterization of cell elastic properties is crucial for understanding the mechanisms by which cells sense mechanical stimuli and how these factors alter cellular functions. Optical and magnetic tweezers are micromanipulation techniques which are widely used for quantifying the stiffness of adherent cells from their response to an external force applied on a bead partially embedded within the cell cortex. However, the relationships between imposed external force and resulting bead translation or rotation obtained from these experimental techniques only characterize the apparent cell stiffness. Indeed, the value of the estimated apparent cell stiffness integrates the effect of different geometrical parameters, the most important being the bead embedding angle 2gamma, bead radius R, and cell height h. In this paper, a three-dimensional finite element analysis was used to compute the cell mechanical response to applied force in tweezer experiments and to explicit the correcting functions which have to be used in order to infer the intrinsic cell Young's modulus from the apparent elasticity modulus. Our analysis, performed for an extensive set of values of gamma, h, and R, shows that the most relevant parameters for computing the correcting functions are the embedding half angle gamma and the ratio h(u)/2R, where h(u) is the under bead cell thickness. This paper provides original analytical expressions of these correcting functions as well as the critical values of the cell thickness below which corrections of the apparent modulus are necessary to get an accurate value of cell Young's modulus. Moreover, considering these results and taking benefit of previous results obtained on the estimation of cell Young's modulus of adherent cells probed by magnetic twisting cytometry (MTC) (Ohayon, J., and Tracqui, P., 2005, Ann. Biomed. Eng., 33, pp. 131-141), we were able to clarify and to solve the still unexplained discrepancies reported between estimations of elasticity modulus performed on the same cell type and probed with MTC and optical tweezers (OT). More generally, this study may strengthen the applicability of optical and magnetic tweezers techniques by insuring a more precise estimation of the intrinsic cell Young's modulus (CYM).


Asunto(s)
Análisis de Elementos Finitos , Magnetismo , Modelos Biológicos , Pinzas Ópticas , Animales , Adhesión Celular/fisiología , Elasticidad , Humanos , Mecanotransducción Celular/fisiología , Estrés Mecánico
12.
Acta Biotheor ; 53(4): 277-93, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16583270

RESUMEN

Computational cell models appear as necessary tools for handling the complexity of intracellular cell dynamics, especially calcium dynamics. However, while oscillating intracellular calcium oscillations are well documented and modelled, a simple enough virtual cell taking into account the mechano-chemical coupling between calcium oscillations and cell mechanical properties is still lacking. Considering the spontaneous periodic contraction of isolated cardiac myocytes, we propose here a virtual cardiac cell model in which the cellular contraction is modelled using an hyperelastic description of the cell mechanical behaviour. According to the experimental data, the oscillating cytosolic calcium concentrations trigger the spatio-temporal variation of the anisotropic intracellular stresses. The finite element simulations of the virtual cell deformations are compared to the self-sustained contractions of isolated rat cardiomyocytes recorded by time-lapse video-microscopy.


Asunto(s)
Ventrículos Cardíacos/citología , Modelos Biológicos , Animales , Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...