Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes Genet Syst ; 81(3): 211-4, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16905875

RESUMEN

On the basis of the entire mitochondrial DNA sequence of common wheat, Triticum aestivum, 21 mitochondrial microsatellite loci having more than ten mononucleotide repeats were identified. The mitochondrial microsatellite variability at all loci was examined with 43 accessions from 11 Triticum and Aegilops species involved in wheat polyploidy evolution. Polymorphic banding patterns were obtained at 15 out of 21 mitochondrial microsatellite loci. The number of alleles per polymorphic microsatellite ranged from 2 to 5 with an average of 3.07, and the diversity values (H) ranged from 0.09 to 0.50 with an average of 0.29. These values are almost two third of wheat chloroplast microsatellite values, indicating that variability of mitochondrial microsatellite is much less than that of chloroplast microsatellite. Based on the allele variation at all loci, a total of seven mitochondrial haplotypes were identified among common wheat and its ancestral species. Three diploid species showed their own specific haplotypes and timopheevi group (11 accessions) had three types, whereas 29 accessions of emmer and common wheat groups shared the same haplotype. These results indicate that a single mitochondrial haplotype determined by microsatellite analysis has conservatively been maintained in the evolutionary lineage from wild tetraploid to cultivated hexaploid species.


Asunto(s)
Variación Genética , Repeticiones de Microsatélite/genética , Mitocondrias/genética , Triticum/genética , ADN Mitocondrial/genética , Evolución Molecular
2.
Genome ; 48(1): 55-64, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15729397

RESUMEN

Andigena potatoes (Solanum tuberosum L. subsp. andigena Hawkes) (2n = 4x = 48) are native farmer-selected important cultivars that form a primary gene pool of the common potato (Solanum tuberosum L. subsp. tuberosum). The genetic diversity of 185 Andigena accessions and 6 Chilean native potatoes (S. tuberosum subsp. tuberosum) was studied using chloroplast DNA (ctDNA) microsatellites and nuclear DNA (nDNA) restriction fragment length polymorphism (RFLP) markers. Andigena potatoes had 14 ctDNA haplotypes and showed higher variability in the central Andes, particularly in Bolivia, whereas those in the northern regions of the distribution area were remarkably uniform with A1 ctDNA and Chilean subsp. tuberosum with T ctDNA. Most of 123 clearly scored RFLP bands using 30 single-copy probes were randomly distributed throughout the distribution area and proved the same gene pool shared among these widely collected accessions. Nevertheless, the geographic trend of the nDNA differentiation from north to south along the Andes and the correlated differentiation between nDNA and ctDNA (r = 0.120) could also be revealed by canonical variates analysis. These results suggest that the genetic diversity in Andigena was brought about primarily from cultivated diploid species but considerably modified through sexual polyploidization and intervarietal and (or) introgressive hybridization and long-distance dispersal of seed tubers by humans.


Asunto(s)
Núcleo Celular/genética , ADN de Cloroplastos/genética , Polimorfismo de Longitud del Fragmento de Restricción , Solanum tuberosum/genética , Marcadores Genéticos , Haplotipos , Filogenia
3.
Genome ; 48(6): 977-84, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16391667

RESUMEN

Cultivated diploid potatoes (2n = 2x = 24) are self-incompatible, but can be altered to become self-compatible using the Sli gene. Previously, a diploid clone 97H32-6 was selfed up to S3 using the Sli gene. To explore the usefulness of the Sli gene for the production of highly homozygous diploid potatoes, 2 S4 families from the above 97H32-6 derived S3 lines (inbred series A) and 3 S5 families by continuous selfings from a different F1 (= S0) plant (inbred series B) were developed. The level of heterozygosity and the location of heterozygous loci on the genetic map were investigated using RFLP and AFLP markers. The average heterozygosity levels of the originally heterozygous loci decreased from 100% in S0 to 10.7% in S4 and 8.6% in S5 (inbred series A and B, respectively). The average rate of reduction in heterozygosity per generation (38.4% and 38.5% for inbred series A and B, respectively) was lower than the theoretically expected rate (50%). However, none of the loci or chromosome sections was exclusively heterozygous in the advanced self-progeny. Thus, highly homozygous and seed-propagated diploid potatoes could be obtained by repeated selfing using the Sli gene.


Asunto(s)
Diploidia , Genes de Plantas , Homocigoto , Proteínas de Plantas/genética , Solanum tuberosum/genética , Mapeo Cromosómico , Fertilidad/genética , Heterocigoto , Endogamia
4.
Genome ; 47(1): 46-56, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15060601

RESUMEN

Over 3500 accessions of Andean landraces have been known in potato, classified into 7 cultivated species ranging from 2x to 5x (Hawkes 1990). Chloroplast DNA (ctDNA), distinguished into T, W, C, S, and A types, showed extensive overlaps in their frequencies among cultivated species and between cultivated and putative ancestral wild species. In this study, 76 accessions of cultivated and 19 accessions of wild species were evaluated for ctDNA types and examined by ctDNA high-resolution markers (ctDNA microsatellites and H3 marker) and nuclear DNA restriction fragment length polymorphisms (RFLPs). ctDNA high-resolution markers identified 25 different ctDNA haplotypes. The S- and A-type ctDNAs were discriminated as unique haplotypes from 12 haplotypes having C-type ctDNA and T-type ctDNA from 10 haplotypes having W-type ctDNA. Differences among ctDNA types were strongly correlated with those of ctDNA high-resolution markers (r = 0.822). Differentiation between W-type ctDNA and C-, S-, and A-type ctDNAs was supported by nDNA RFLPs in most species except for those of recent or immediate hybrid origin. However, differentiation among C-, S-, and A-type ctDNAs was not clearly supported by nDNA RFLPs, suggesting that frequent genetic exchange occurred among them and (or) they shared the same gene pool owing to common ancestry.


Asunto(s)
Variación Genética , Filogenia , Solanum tuberosum/genética , Cartilla de ADN , ADN de Cloroplastos/genética , Marcadores Genéticos , Haplotipos/genética , Repeticiones de Microsatélite/genética , Perú , Polimorfismo de Longitud del Fragmento de Restricción , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA