Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 65(3): 100510, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280459

RESUMEN

The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid ß (Aß)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aß uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aß production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/metabolismo
2.
Cells ; 12(3)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36766796

RESUMEN

Aducanumab, co-developed by Eisai (Japan) and Biogen (U.S.), has received Food and Drug Administration approval for treating Alzheimer's disease (AD). In addition, its successor antibody, lecanemab, has been approved. These antibodies target the aggregated form of the small peptide, amyloid-ß (Aß), which accumulates in the patient brain. The "amyloid hypothesis" based therapy that places the aggregation and toxicity of Aß at the center of the etiology is about to be realized. However, the effects of immunotherapy are still limited, suggesting the need to reconsider this hypothesis. Aß is produced from a type-I transmembrane protein, Aß precursor protein (APP). One of the APP metabolites, the 99-amino acids C-terminal fragment (C99, also called ßCTF), is a direct precursor of Aß and accumulates in the AD patient's brain to demonstrate toxicity independent of Aß. Conventional drug discovery strategies have focused on Aß toxicity on the "outside" of the neuron, but C99 accumulation might explain the toxicity on the "inside" of the neuron, which was overlooked in the hypothesis. Furthermore, the common region of C99 and Aß is a promising target for multifunctional AD drugs. This review aimed to outline the nature, metabolism, and impact of C99 on AD pathogenesis and discuss whether it could be a therapeutic target complementing the amyloid hypothesis.


Asunto(s)
Enfermedad de Alzheimer , Estados Unidos , Humanos , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo
3.
Sci Rep ; 13(1): 323, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609635

RESUMEN

Given its limited accessibility, the CA2 area has been less investigated compared to other subregions of the hippocampus. While the development of transgenic mice expressing Cre recombinase in the CA2 has revealed unique features of this area, the use of mouse lines has several limitations, such as lack of specificity. Therefore, a specific gene delivery system is required. Here, we confirmed that the AAV-PHP.eB capsid preferably infected CA2 pyramidal cells following retro-orbital injection and demonstrated that the specificity was substantially higher after injection into the lateral ventricle. In addition, a tropism for the CA2 area was observed in organotypic slice cultures. Combined injection into the lateral ventricle and stereotaxic injection into the CA2 area specifically introduced the transgene into CA2 pyramidal cells, enabling us to perform targeted patch-clamp recordings and optogenetic manipulation. These results suggest that AAV-PHP.eB is a versatile tool for specific gene transduction in CA2 pyramidal cells.


Asunto(s)
Vectores Genéticos , Ventrículos Laterales , Ratones , Animales , Transducción Genética , Vectores Genéticos/genética , Técnicas de Transferencia de Gen , Ratones Transgénicos , Células Piramidales , Dependovirus/genética
4.
iScience ; 25(3): 103869, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243232

RESUMEN

Endosomal anomalies because of vesicular traffic impairment have been indicated as an early pathology of Alzheimer'| disease (AD). However, the mechanisms and therapeutic targets remain unclear. We previously reported that ßCTF, one of the pathogenic metabolites of APP, interacts with TMEM30A. TMEM30A constitutes a lipid flippase with P4-ATPase and regulates vesicular trafficking through the asymmetric distribution of phospholipids. Therefore, the alteration of lipid flippase activity in AD pathology has got attention. Herein, we showed that the interaction between ßCTF and TMEM30A suppresses the physiological formation and activity of lipid flippase in AD model cells, A7, and AppNL-G-F/NL-G-F model mice. Furthermore, the T-RAP peptide derived from the ßCTF binding site of TMEM30A improved endosomal anomalies, which could be a result of the restored lipid flippase activity. Our results provide insights into the mechanisms of vesicular traffic impairment and suggest a therapeutic target for AD.

5.
J Allergy Clin Immunol ; 149(3): 1085-1096, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34411589

RESUMEN

BACKGROUND: Mechanical alloknesis (or innocuous mechanical stimuli-evoked itch) often occurs in dry skin-based disorders such as atopic dermatitis and psoriasis. However, the molecular and cellular mechanisms underlying mechanical alloknesis remain unclear. We recently reported the involvement of CD26 in the regulation of psoriatic itch. This molecule exhibits dipeptidyl peptidase IV (DPPIV) enzyme activity and exerts its biologic effects by processing various substances, including neuropeptides. OBJECTIVE: The aim of the present study was to investigate the peripheral mechanisms of mechanical alloknesis by using CD26/DPPIV knockout (CD26KO) mice. METHODS: We applied innocuous mechanical stimuli to CD26KO or wild-type mice. The total number of scratching responses was counted as the alloknesis score. Immunohistochemical and behavioral pharmacologic analyses were then performed to examine the physiologic activities of CD26/DPPIV or endomorphins (EMs), endogenous agonists of µ-opioid receptors. RESULTS: Mechanical alloknesis was more frequent in CD26KO mice than in wild-type mice. The alloknesis score in CD26KO mice was significantly reduced by the intradermal administration of recombinant DPPIV or naloxone methiodide, a peripheral µ-opioid receptor antagonist, but not by that of mutant DPPIV without enzyme activity. EMs (EM-1 and EM-2), selective ligands for µ-opioid receptors, are substrates for DPPIV. Immunohistochemically, EMs were located in keratinocytes, fibroblasts, and peripheral sensory nerves. Behavioral analyses revealed that EMs preferentially provoked mechanical alloknesis over chemical itch. DPPIV-digested forms of EMs did not induce mechanical alloknesis. CONCLUSION: The present results suggest that EMs induce mechanical alloknesis at the periphery under the enzymatic control of CD26/DPPIV.


Asunto(s)
Dermatitis Atópica , Dipeptidil Peptidasa 4 , Psoriasis , Animales , Dipeptidil Peptidasa 4/genética , Queratinocitos , Ratones , Prurito
6.
Front Mol Neurosci ; 15: 1068990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683852

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most common cause of dementia in the elderly. The presence of large numbers of senile plaques, neurofibrillary tangles, and cerebral atrophy is the characteristic feature of AD. Amyloid ß peptide (Aß), derived from the amyloid precursor protein (APP), is the main component of senile plaques. AD has been extensively studied using methods involving cell lines, primary cultures of neural cells, and animal models; however, discrepancies have been observed between these methods. Dissociated cultures lose the brain's tissue architecture, including neural circuits, glial cells, and extracellular matrix. Experiments with animal models are lengthy and require laborious monitoring of multiple parameters. Therefore, it is necessary to combine these experimental models to understand the pathology of AD. An experimental platform amenable to continuous observation and experimental manipulation is required to analyze long-term neuronal development, plasticity, and progressive neurodegenerative diseases. In the current study, we provide a practical method to slice and cultivate rodent hippocampus to investigate the cleavage of APP and secretion of Aß in an ex vivo model. Furthermore, we provide basic information on Aß secretion using slice cultures. Using our optimized method, dozens to hundreds of long-term stable slice cultures can be coordinated simultaneously. Our findings are valuable for analyses of AD mouse models and senile plaque formation culture models.

7.
Biomed Pharmacother ; 141: 111800, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34175819

RESUMEN

BACKGROUND: The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with µ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS: Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and µ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/µ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS: In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and µ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION: The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/µ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Antagonistas de los Receptores de la Endotelina A/administración & dosificación , Morfina/administración & dosificación , Multimerización de Proteína/fisiología , Receptor de Endotelina A/metabolismo , Receptores Opioides mu/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Péptidos Cíclicos/administración & dosificación , Multimerización de Proteína/efectos de los fármacos
8.
Methods Mol Biol ; 2322: 111-117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34043197

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that affects the motor system. PD is characterized by the accumulation of intracellular protein aggregates, Lewy bodies, and Lewy neurites, composed primarily of the protein α-synuclein. Thus, PD is classified as the most common synucleinopathy. The motor symptoms of the disease result from the death of cells in the region of the midbrain, leading to a dopamine deficit. While the cause of PD is unknown, it is believed to involve both inherited and environmental factors. PD has been extensively studied using in vitro and in vivo models; however, some discrepancy is observed in these results. In order to analyze progressive neurodegenerative disease, experimental platform amenable to continuous observation and experimental manipulation is required. In this chapter, we provide a practical method to slice and cultivate the midbrain tissue as an ex vivo experimental model.


Asunto(s)
Mesencéfalo/patología , Enfermedad de Parkinson/patología , Células Cultivadas , Progresión de la Enfermedad , Dopamina/metabolismo , Humanos , Mesencéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
9.
ACS Chem Neurosci ; 11(4): 567-578, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31977183

RESUMEN

Molecular networks containing various proteins mediate many types of cellular processes. Elucidation of how the proteins interact will improve our understanding of the molecular integration and physiological and pharmacological propensities of the network. One of the most complicated and unexplained interactions between proteins is the inter-G protein-coupled receptor (GPCR) interaction. Recently, many studies have suggested that an interaction between neurotransmitter GPCRs may mediate diverse modalities of neural responses. The B-type gamma-aminobutyric acid (GABA) receptor (GBR) and type-1 metabotropic glutamate receptor (mGluR1) are GPCRs for GABA and glutamate, respectively, and each plays distinct roles in controlling neurotransmission. We have previously reported the possibility of their functional interaction in central neurons. Here, we examined the interaction of these GPCRs using stable cell lines and rat cerebella. Cell-surface imaging and coimmunoprecipitation analysis revealed that these GPCRs interact on the cell surface. Furthermore, fluorometry revealed that these GPCRs mutually modulate signal transduction. These findings provide solid evidence that mGluR1 and GBR have intrinsic abilities to form complexes and to mutually modulate signaling. These findings indicate that synaptic plasticity relies on a network of proteins far more complex than previously assumed.


Asunto(s)
Ácido Glutámico/metabolismo , Plasticidad Neuronal/fisiología , Neurotransmisores/metabolismo , Receptores de GABA/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/fisiología
10.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118204

RESUMEN

The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/ultraestructura , Aparato de Golgi/ultraestructura , Plasticidad Neuronal , Neuronas/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Modelos Animales de Enfermedad , Femenino , Aparato de Golgi/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Ratones Noqueados , Vías Nerviosas/metabolismo , Vías Nerviosas/ultraestructura , Neuronas/metabolismo , Cultivo Primario de Células , Células de Purkinje/metabolismo , Células de Purkinje/ultraestructura
11.
ACS Chem Neurosci ; 10(1): 304-312, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30230808

RESUMEN

Silica nanoparticles (SiNPs) are produced on an industrial scale and used in various fields including health care, because silica is stable, inexpensive, and easy to handle. Despite these benefits, there is concern that exposure to SiNPs may lead to adverse effects in certain types of cells or tissues, such as hemolysis, immune responses, and developmental abnormalities in the brain and developing embryos. Although investigations on the toxicity of SiNPs against neurons are essential for medicinal use, only a few studies have assessed the direct effects of SiNPs on cells derived from the central nervous system. In this study, we investigated the toxic effects of SiNPs on primary cultures of hippocampal cells, using SiNPs with diameters of 10-1500 nm. We showed that treatment with SiNPs caused oxidative stress and cell death. Furthermore, we found that these cytotoxicities were dependent on the particle size, concentration, and surface charge of SiNPs, as well as the treatment temperature. The toxicity was reduced by SiNP surface functionalization or protein coating and by pretreating cells with an antioxidant, suggesting that contact-induced oxidative stress may be partially responsible for SiNP-induced cell death. These data will be valuable for utilizing SiNPs in biomedical applications.


Asunto(s)
Nanopartículas/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Dióxido de Silicio/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estrés Oxidativo/fisiología , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
12.
PLoS One ; 13(8): e0200988, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30086173

RESUMEN

Although the aggregation of amyloid-ß peptide (Aß) clearly plays a central role in the pathogenesis of Alzheimer's disease (AD), endosomal traffic dysfunction is considered to precede Aß aggregation and trigger AD pathogenesis. A body of evidence suggests that the ß-carboxyl-terminal fragment (ßCTF) of amyloid-ß precursor protein (APP), which is the direct precursor of Aß, accumulates in endosomes and causes vesicular traffic impairment. However, the mechanism underlying this impairment remains unclear. Here we identified TMEM30A as a candidate partner for ßCTF. TMEM30A is a subcomponent of lipid flippase that translocates phospholipids from the outer to the inner leaflet of the lipid bilayer. TMEM30A physically interacts with ßCTF in endosomes and may impair vesicular traffic, leading to abnormally enlarged endosomes. APP traffic is also concomitantly impaired, resulting in the accumulation of APP-CTFs, including ßCTF. In addition, we found that expressed BACE1 accumulated in enlarged endosomes and increased Aß production. Our data suggested that TMEM30A is involved in ßCTF-dependent endosome abnormalities that are related to Aß overproduction.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Células COS , Chlorocebus aethiops , Endosomas/patología , Humanos , Proteínas de la Membrana/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
JCI Insight ; 2(18)2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28931752

RESUMEN

Blood pressure is regulated by extrinsic factors including noradrenaline, the sympathetic neurotransmitter that controls cardiovascular functions through adrenergic receptors. However, the fine-tuning system of noradrenaline signaling is relatively unknown. We here show that l-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of catecholamines, sensitizes the vascular adrenergic receptor alpha1 (ADRA1) through activation of L-DOPA receptor GPR143. In WT mice, intravenous infusion of the ADRA1 agonist phenylephrine induced a transient elevation of blood pressure. This response was attenuated in Gpr143 gene-deficient (Gpr143-/y) mice. Specific knockout of Gpr143 in vascular smooth muscle cells (VSMCs) also showed a similar phenotype, indicating that L-DOPA directly modulates ADRA1 signaling in the VSMCs. L-DOPA at nanomolar concentrations alone produced no effect on the VSMCs, but it enhanced phenylephrine-induced vasoconstriction and intracellular Ca2+ responses. Phenylephrine also augmented the phosphorylation of extracellular signal-regulated kinases in cultured VSMCs from WT but not Gpr143-/y mice. In WT mice, blood pressure increased during the transition from light-rest to dark-active phases. This elevation was not observed in Gpr143-/y mice. Taken together, our findings provide evidence for L-DOPA/GPR143 signaling that exerts precursor control of sympathetic neurotransmission through sensitizing vascular ADRA1.


Asunto(s)
Levodopa/farmacología , Tono Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Animales , Calcio/metabolismo , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Fenilefrina/farmacología , Fosforilación , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Vasoconstrictores/farmacología
14.
J Alzheimers Dis ; 56(2): 641-653, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28035928

RESUMEN

The amyloid-ß protein precursor (AßPP) is cleaved by a transmembrane protease termed ß-site AßPP cleavage enzyme (BACE1), which is being explored as a target for therapy and prevention of Alzheimer's disease (AD). Although genetic deletion of BACE1 results in abolished amyloid pathology in AD model mice, it also results in neurodevelopmental phenotypes such as hypomyelination and synaptic loss, observed in schizophrenia and autism-like phenotype. These lines of evidence indicate that the inhibition of BACE1 causes adverse side effects during the neurodevelopmental stage. However, the effects of the inhibition of BACE1 activity on already developed neurons remain unclear. Here, we utilized hippocampal slice cultures as an ex vivo model that enabled continuous and long-term analysis for the effect of BACE1 inhibition on neuronal circuits and synapses. Temporal changes in synaptic proteins in hippocampal slices indicated acute synaptic loss, followed by synapse formation and maintenance phases. Long-term BACE1 inhibition in the neurodevelopmental stage caused the loss of synaptic proteins but failed to alter synaptic proteins in the already developed maintenance stage. These data indicate that BACE1 function on synapses is dependent on synaptic developmental stages, and our study provides a useful model to observe the long-term effect of BACE1 activity in the brain, and to evaluate adverse effects of BACE inhibitors.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Hipocampo/enzimología , Hipocampo/crecimiento & desarrollo , Neuronas/enzimología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Ratas Sprague-Dawley , Receptores de Glutamato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/enzimología , Técnicas de Cultivo de Tejidos
15.
BMC Biotechnol ; 16: 36, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068216

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCRs) are ubiquitous surface proteins mediating various biological responses and thus, important targets for therapeutic drugs. GPCRs individually produce their own signaling as well as modulate the signaling of other GPCRs. Real-time observation of GPCR signaling and modulation in living cells is key to molecular study of biological responses and pharmaceutical development. However, fluorescence imaging, the technique widely used for this purpose, requires a fluorescent dye which may inhibit biological responses or a fluorescent-tagged target protein created through time-consuming genetic manipulation. In this study, we applied two-dimensional surface plasmon resonance (SPR) imaging to monitoring the translocation of protein kinase C (PKC), a major GPCR-coupled signaling molecule in the widely used HEK293 cell lines and examined whether the signaling of, and, modulation between heterologously expressed GPCRs can be measured without fluorescent labeling. RESULTS: We cultured HEK293 cells on the gold-plated slide glass and evoked SPR at the interface between the cell's plasma membrane and the gold surface with incident light. The translocation of activated native PKC to the plasma membrane is expected to alter the incident angle-SPR extent relation, and this could be detected as a change in the intensity of light reflection from the specimen illuminated at a fixed incident angle. Direct activation of PKC with 12-O-tetradecanoylphorbol-13-acetate increased the reflection intensity. This increase indeed reported PKC translocation because it was reduced by a pre-treatment with bisindolylmaleimide-1, a PKC inhibitor. We further applied this technique to a stable HEK293 cell line heterologously expressing the GPCRs type-1 metabotropic glutamate receptor (mGluR1) and adenosine A1 receptor (A1R). (RS)-3,5-dihydroxyphenylglycine, a mGluR1 agonist, increased the reflection intensity, and the PKC inhibitor reduced this increase. A pre-treatment with (R)-N(6)-phenylisopropyladenosine, an A1R-selective agonist suppressed mGluR1-mediated reflection increase. These results suggest that our technique can detect PKC translocation initiated by ligand binding to mGluR1 and its modulation by A1R. CONCLUSIONS: SPR imaging turned out to be utilizable for monitoring GPCR-mediated PKC translocation and its modulation by a different GPCR in a heterologous expression system. This technique provides a powerful yet easy-to-use tool for molecular study of biological responses and pharmaceutical development.


Asunto(s)
Proteína Quinasa C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal/fisiología , Resonancia por Plasmón de Superficie/métodos , Células HEK293 , Humanos , Proteína Quinasa C/análisis , Receptores Acoplados a Proteínas G/análisis , Proteínas Recombinantes/análisis
16.
BMC Neurosci ; 16: 92, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26667128

RESUMEN

BACKGROUND: Hippocampal neurons in the brain polarize to form multiple dendrites and one long axon. The formation of central synapses remains poorly understood. Although several of the intracellular proteins involved in the clustering of central neurotransmitter receptors and ion channels have been identified, the signals involved in pre- and postsynaptic differentiation remain elusive. Synaptotagmin1 is an abundant and important presynaptic vesicle protein that binds Ca(2+) (J Biol Chem 277:7629-7632, 2002) in regulation of synaptic vesicle exocytosis at the synapse. Synapse consists of the formation of synaptic connections and requires precise coordination of Synaptotagmin1. It was reported Synaptotagmin1 plays an important roles in the formation of axonal filopodia and branches in chicken forebrain neurons (Dev Neurobiol 73:27-44, 2013). To determine if Synaptotagmin1 could have a role in formation of axon in hippocampal neurons, we investigated the effects of Synaptotagmin1 overexpression and knockdown using the shRNA on the growth and branching of the axons of primary hippocampal neurons. We showed that overexpression of Synaptotagmin1 leads to abnormal multiple axon formation in cultured rat hippocampal neurons. RESULTS: We first examined the effects of Synaptotagmin1 on the numbers of axon and dendrites. We found that the overexpression of Synaptotagmin1 led to the formation of multiple axons and induced an increase in the number of endogenous postsynaptic protein Homer1c clusters in cultured hippocampal neurons. Endogenous initial segment of axon was detected with anti-sodium channel (anti-NaCh) antibody and with anti-Tau1 (J Neurosci 24: 4605-4613, 2004). The endogenous initial segment of axon was stained with anti-NaCh antibodies and with anti-Tau1 antibodies. Then the numbers of prominence dyed positive were counted as axon. We attempted to specifically knockdown the endogenous Synaptotagmin1 with small hairpin RNAs (shRNAs). To further dissect the functions of endogenous Synaptotagmin1 in neuronal polarity, we used the shRNA of Synaptotagmin1 that specifically blocks the existence of endogenous Synaptotagmin1. When the shRNA of Synaptotagmin1 was introduced to the cells, the number of axons and dendrites did not change. CONCLUSIONS: These results indicate that the accumulation of Synaptotagmin1 may play an important role in axon/dendrite differentiation.


Asunto(s)
Axones/fisiología , Hipocampo/fisiología , Sinaptotagmina I/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Dendritas/fisiología , Técnicas de Silenciamiento del Gen , Células HEK293 , Hipocampo/citología , Proteínas de Andamiaje Homer , Humanos , Microscopía Fluorescente , ARN Interferente Pequeño , Ratas Wistar , Sinaptotagmina I/genética
17.
J Pharmacol Sci ; 128(3): 125-30, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26154847

RESUMEN

The adenosine A1 receptor (A1R) is a G protein-coupled receptor (GPCR) for adenosine, a ubiquitous neuromodulator, and thus regulates neuronal excitability, as well as arousal and sensitivity to pain. In addition, we have previously described a new mode of action for A1R: in cerebellar Purkinje cells, its activation attenuates neuronal responses to glutamate, as mediated by the type-1 metabotropic glutamate receptor (mGluR1). mGluR1 is also a GPCR, and elicits such responses as long-term depression of the postsynaptic response to glutamate, a cellular basis for cerebellar motor learning. Here, we explore in greater detail the interaction between A1R and mGluR1 using non-neuronal cells. Co-immunoprecipitation and Förster resonance energy transfer (FRET) analysis reveal that A1R and mGluR1 form a complex. Furthermore, we found that mGluR1 activation inhibits A1R signaling, as measured by changes in intracellular cAMP. These findings demonstrate that A1R and mGluR1 have the intrinsic ability to form a heteromeric complex and mutually modulate signaling. This interaction may represent a new form of intriguing GPCR-mediated cellular responses.


Asunto(s)
Receptor Cross-Talk/fisiología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A1/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , AMP Cíclico/metabolismo , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Transferencia Resonante de Energía de Fluorescencia , Glutamatos , Células HEK293 , Humanos , Inmunoprecipitación , Depresión Sináptica a Largo Plazo/genética , Transducción de Señal/genética
18.
J Neurosci ; 33(47): 18661-71, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24259587

RESUMEN

G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.


Asunto(s)
Cerebelo/citología , Plasticidad Neuronal/fisiología , Neuronas/citología , Receptor de Adenosina A1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Bicuculina/análogos & derivados , Bicuculina/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Transferencia de Energía , Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Quinoxalinas/farmacología , Ratas , Receptor de Adenosina A1/genética , Receptores de Glutamato Metabotrópico/genética , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
19.
Matrix Biol ; 31(1): 17-28, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21983115

RESUMEN

Laminin α1 (Lama1), which is a subunit of laminin-1 (laminin-111), a heterotrimeric ECM protein, is essential for embryonic development and promotes neurite outgrowth in culture. Because the deletion of Lama1 causes lethality at early embryonic stages in mice, the in vivo role of Lama1 in neural development and functions has not yet been possible to determine. In this study, we generated conditional Lama1 knockout (Lama1(CKO)) mice in the epiblast lineage using Sox2-Cre mice. These Lama1(CKO) mice survived, but displayed behavioral disorders and impaired formation of the cerebellum. Deficiency of Lama1 in the pial basement membrane of the meninges resulted in defects in the conformation of the meninges. During cerebellar development, Lama1 deficiency also caused a decrease in the proliferation and migration of granule cell precursors, disorganization of Bergmann glial fibers and endfeet, and a transient reduction in the activity of Akt. A marked reduction in numbers of dendritic processes in Purkinje cells was observed in Lama1(CKO) mice. Together, these results indicate that Lama1 is required for cerebellar development and functions.


Asunto(s)
Cerebelo/anomalías , Cerebelo/crecimiento & desarrollo , Laminina/metabolismo , Meninges/anomalías , Meninges/crecimiento & desarrollo , Animales , Membrana Basal/metabolismo , Conexinas/metabolismo , Dendritas/metabolismo , Dendritas/patología , Laminina/deficiencia , Laminina/genética , Ratones , Ratones Noqueados/genética , Neuritas/patología , Proteína Oncogénica v-akt/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patología
20.
Anesth Analg ; 113(4): 941-6, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21788310

RESUMEN

BACKGROUND: Lidocaine is used clinically for tactile allodynia associated with diabetes-induced neuropathy. Although the analgesic effect of lidocaine through suppression of microglial activation has been implicated in the development of injury-induced neuropathic pain, its mechanism of action in diabetes-induced tactile allodynia has not yet been completely elucidated. METHODS: To evaluate the effects of lidocaine on microglial response in diabetic neuropathy, streptozotocin (STZ)-injected mice received a continuous infusion of lidocaine (vehicle, 2, or 10%) from day 14 to day 21 after STZ injection. On day 21, microglial accumulation and p38 mitogen-activated protein kinase activation in the dorsal horn were evaluated. In vitro, the effects of lidocaine on cell viability, chemotactic response to monocyte chemotactic protein-1, and induction of proinflammatory mediators were examined in interferon (IFN)-γ-stimulated primary microglial cells. RESULTS: Continuous systemic administration of lidocaine in the early progression of tactile allodynia produced long-lasting analgesic effects in STZ-treated mice. Lidocaine significantly reduced accumulation and p38 phosphorylation of microglial cells in the dorsal horn. In vitro, lidocaine down-regulated IFN-γ-induced gene induction of inducible oxide synthase and interleukin-1ß. Pretreatment with lidocaine significantly reduced chemotactic response to monocyte chemotactic protein-1 of IFN-γ-activated microglial cells. CONCLUSION: Lidocaine alleviates STZ-induced tactile allodynia, possibly by modulating the p38 pathway in spinal microglial cells. Inhibiting microglial activation by lidocaine treatment early in the course of diabetes-induced neuropathy represents a potential therapeutic strategy for tactile allodynia.


Asunto(s)
Anestésicos Locales/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Hiperalgesia/prevención & control , Lidocaína/farmacología , Microglía/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Anestésicos Locales/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiotaxis/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/fisiopatología , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Infusiones Parenterales , Interferón gamma/metabolismo , Interleucina-1beta/metabolismo , Lidocaína/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Fosforilación , Células del Asta Posterior/metabolismo , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...