Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Parasitol Res ; 123(7): 263, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976068

RESUMEN

The rapid emergence of drug resistance against the mainstream antimalarial drugs has increased the need for development of novel drugs. Recent approaches have embarked on the repurposing of existing drugs to induce cell death via programmed cell death pathways. However, little is known about the ER stress response and programmed cell death pathways of the malaria parasite. In this study, we treated ex vivo Plasmodium berghei cultures with tunicamycin, 5-fluorouracil, and chloroquine as known stress inducer drugs to probe the transcriptional changes of autophagy and apoptosis-related genes (PbATG5, PbATG8, PbATG12, and PbMCA2). Treatments with 5-fluorouracil and chloroquine resulted in the upregulation of all analyzed markers, yet the levels of PbATG5 and PbATG12 were dramatically higher in chloroquine-treated ex vivo cultures. In contrast, tunicamycin treatment resulted in the downregulation of both PbATG8 and PbATG12, and upregulation of PbMCA2. Our results indicate that the malaria parasite responds to various ER stressors by inducing autophagy- and/or apoptosis-like pathways.


Asunto(s)
Antimaláricos , Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Plasmodium berghei , Estrés del Retículo Endoplásmico/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/fisiología , Apoptosis/efectos de los fármacos , Antimaláricos/farmacología , Autofagia/efectos de los fármacos , Animales , Cloroquina/farmacología , Tunicamicina/farmacología , Ratones
2.
Mol Microbiol ; 121(4): 767-780, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38238886

RESUMEN

Endoplasmic reticulum (ER) plays a pivotal role in the regulation of stress responses in multiple eukaryotic cells. However, little is known about the effector mechanisms that regulate stress responses in ER of the malaria parasite. Herein, we aimed to identify the importance of a transmembrane protein 33 (TMEM33)-domain-containing protein in life cycle of the rodent malaria parasite Plasmodium berghei. TMEM33 is an ER membrane-resident protein that is involved in regulating stress responses in various eukaryotic cells. A C-terminal tagged TMEM33 was localized in the ER throughout the blood and mosquito stages of development. Targeted deletion of TMEM33 confirmed its importance for asexual blood stages and ookinete development, in addition to its essential role for sporozoite infectivity in the mammalian host. Pilot scale analysis shows that the loss of TMEM33 results in the initiation of ER stress response and induction of autophagy. Our findings conclude an important role of TMEM33 in the development of all life cycle stages of the malaria parasite, which indicates its potential as an antimalarial target.


Asunto(s)
Malaria , Plasmodium berghei , Animales , Retículo Endoplásmico/metabolismo , Estadios del Ciclo de Vida , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo
3.
Infect Immun ; 91(7): e0016723, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37260388

RESUMEN

A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.


Asunto(s)
Carboxiliasas , Culicidae , Malaria , Parásitos , Animales , Masculino , Culicidae/parasitología , Aminoácidos/metabolismo , Lisina/metabolismo , Malaria/parasitología , Bacterias , Células Germinativas/metabolismo , Carboxiliasas/metabolismo
4.
Vaccine ; 41(7): 1281-1285, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36653222

RESUMEN

Genetically-growth-attenuated blood-stage parasites were generated inPlasmodium falciparumby targeted deletion of NT1 (Nucleoside Transporter-1) gene, and Pfnt1(-) parasites only grew after providing the culture with supra-physiological concentrations of purines. Genetically-attenuatedP. yoeliint1(-)parasites induced sterile-protection against homologous blood-stage infectious challenge after immunization with single subpatent doses, which remained subpatent even in immune-compromised mice. Here, we showed that immunizations with frozen-stocks of equally-mixedP. bergheiandP. yoelii nt1(-)parasites in single subcutaneous doses, which did not lead to patent blood-stage infection, conferred sterile protection against intravenous infectious blood-stage challenge with wild-type parasites ofP. bergheiANKA andP. yoelii17X-NL strains. This data highlights the possibility that a single subcutaneous sub-patent dose of two species of genetically-growth-attenuated parasites, which can protect humans against twoPlasmodiumspp. infections, could be developed in cultures provided with supra-physiological concentrations of purines, and shipped to endemic areas as frozen-stock doses.


Asunto(s)
Vacunas contra la Malaria , Malaria , Parásitos , Plasmodium yoelii , Plasmodium , Humanos , Ratones , Animales , Inmunización , Vacunación , Plasmodium berghei
5.
Pathog Glob Health ; 117(3): 284-292, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36003062

RESUMEN

All protozoan parasites are lacking the pathway to synthesize purines de novo and therefore they depend on their host cells to provide purines. A number of highly conserved nucleoside transporter (NT) proteins are encoded in malaria parasite genomes, of which NT1 is characterized in Plasmodium falciparum and P. yoelii as a plasma membrane protein that is responsible for salvage of purines from the host, and NT2 is an endoplasmic membrane NT protein. Whereas NT3 is only present in primate malaria parasites, little is known about NT4, which is conserved in all malaria parasite species. Herein, we targeted NT4 gene for deletion in P. berghei. NT4 knockout parasites developed normally as blood stages, ookinetes and formed oocysts with sporozoites compared with wild-type (WT) P. berghei ANKA parasites. However, nt4(-) sporozoites showed significantly decreased egress from oocysts to hemolymph, significant reduction of colonization of the salivary glands, and complete abolishment of infection of the mammalian host by salivary gland and hemolymph sporozoites. Therefore, we identify NT4 as a NT that is important, not for replication and growth, but for sporozoite infectivity functions.


Asunto(s)
Anopheles , Malaria , Parásitos , Animales , Esporozoítos/genética , Anopheles/genética , Oocistos/metabolismo , Malaria/parasitología , Proteínas Protozoarias/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Mamíferos/metabolismo
6.
Vaccines (Basel) ; 10(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36366392

RESUMEN

Host cell-free, axenic development of liver stages (LS) of the malaria parasite has been demonstrated. Here we explored axenic liver stages as a novel live whole parasite malaria vaccine platform, which is unaltered and not prone to human-error, compared to the immunization with live-attenuated sporozoites that must be done intravenously. We show that in contrast to live sporozoites, axenic LS are not infectious to the immunized host. Subcutaneous immunizations of mice with Plasmodium yoelii axenic LS, developed from wild-type (WT) sporozoites or WT sporozoites expressing enhanced-GFP, conferred sterile protection against P. yoelii infectious sporozoite challenge. Thus, axenic liver stages of P. falciparum and P. vivax might constitute an attractive alternative to live sporozoite immunization.

7.
Antimicrob Agents Chemother ; 66(12): e0026922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36342168

RESUMEN

We generated highly chloroquine (CQ)-resistant (ResCQ) Plasmodium yoelii parasites by stepwise exposure to increasing concentrations of CQ and CQ-sensitive parasites (SenCQ) by parallel mock treatments. No mutations in genes that are associated with drug resistance were detected in ResCQ clones. Autophagy-related genes were highly upregulated in SenCQ compared to ResCQ parasites during CQ treatment. This indicates that CQ resistance can be developed in the malaria parasite by the inhibition of autophagy as an alternative drug resistance mechanism.


Asunto(s)
Antimaláricos , Cloroquina , Resistencia a Medicamentos , Plasmodium yoelii , Proteínas Protozoarias , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/tratamiento farmacológico , Malaria/parasitología , Proteínas Protozoarias/genética , Plasmodium yoelii/efectos de los fármacos , Plasmodium yoelii/genética
8.
Microbiol Res ; 265: 127181, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36162149

RESUMEN

Positively-charged polyamines are essential molecules for the replication of eukaryotic cells and are particularly important for the rapid proliferation of parasitic protozoa and cancer cells. Unlike in Trypanosoma brucei, the inhibition of the synthesis of intermediate polyamine Putrescine caused only partial defect in malaria parasite blood-stage growth. In contrast, reducing the intracellular concentrations of Spermidine and Spermine by polyamine analogs caused significant defects in blood-stage growth in Plasmodium yoelii and P. falciparum. However, little is known about the synthesizing enzyme of Spermidine and Spermine in the malaria parasite. Herein, malaria parasite conserved Spermidine Synthase (SpdS) gene was targeted for deletion/complementation analyses by knockout/knock-in constructs in P. yoelii. SpdS was found to be essential for blood-stage growth. Live fluorescence imaging in blood-stages and sporozoites confirmed a specific mitochondrial localization, which is not known for any polyamine-synthesizing enzyme so far. This study identifies SpdS as an excellent drug targeting candidate against the malaria parasite, which is localized to the parasite mitochondrion.


Asunto(s)
Malaria , Parásitos , Animales , Mitocondrias , Plasmodium falciparum/genética , Poliaminas , Putrescina , Espermidina , Espermidina Sintasa/genética , Espermina
9.
Biomed Opt Express ; 13(7): 3904-3921, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35991917

RESUMEN

Diagnosis of malaria in endemic areas is hampered by the lack of a rapid, stain-free and sensitive method to directly identify parasites in peripheral blood. Herein, we report the use of Fourier ptychography to generate wide-field high-resolution quantitative phase images of erythrocytes infected with malaria parasites, from a whole blood sample. We are able to image thousands of erythrocytes (red blood cells) in a single field of view and make a determination of infection status of the quantitative phase image of each segmented cell based on machine learning (random forest) and deep learning (VGG16) models. Our random forest model makes use of morphology and texture based features of the quantitative phase images. In order to label the quantitative images of the cells as either infected or uninfected before training the models, we make use of a Plasmodium berghei strain expressing GFP (green fluorescent protein) in all life cycle stages. By overlaying the fluorescence image with the quantitative phase image we could identify the infected subpopulation of erythrocytes for labelling purposes. Our machine learning model (random forest) achieved 91% specificity and 72% sensitivity while our deep learning model (VGG16) achieved 98% specificity and 57% sensitivity. These results highlight the potential for quantitative phase imaging coupled with artificial intelligence to develop an easy to use platform for the rapid and sensitive diagnosis of malaria.

10.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35214758

RESUMEN

Here, we present the construction of an attenuated herpes simplex virus type-1 (HSV-1)-vectored vaccine, expressing three liver-stage (LS) malaria parasite exported proteins (EXP1, UIS3 and TMP21) as fusion proteins with the VP26 viral capsid protein. Intramuscular and subcutaneous immunizations of mice with a pooled vaccine, composed of the three attenuated virus strains expressing each LS antigen, induced sterile protection against the intravenous challenge of Plasmodium yoelii 17X-NL salivary gland sporozoites. Our data suggest that this malaria vaccine may be effective in preventing malaria parasite infection using practical routes of immunization in humans.

11.
Life Sci ; 256: 118000, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32585246

RESUMEN

AIMS: Hsp90 is regarded as an important therapeutic target in cancer treatment. Client proteins of Hsp90 like Beclin-1, PI3K, and AKT, are associated with tumor development, poor prognosis, and resistance to cancer therapies. This study aims to analyze the role of Gedunin, an Hsp-90 inhibitor, in mediation of crosstalk between apoptosis and autophagy by targeting Beclin-1:Bcl-2 interaction, and ER stress. MAIN METHODS: A549 cells were treated with different concentrations of gedunin, and inhibitory rate was evaluated by MTT assay. Effect of gedunin on generation of reactive oxygen species, mitochondrial membrane potential, and chromatin condensation was studied by staining methods like DCFH-DA, MitoTracker, and DAPI. Expression of EGFR, PIK3CA, AKT, marker genes for apoptosis and autophagy were studied using semi-quantitative RT-PCR. Interaction study of Hsp90:Beclin-1:Bcl-2 was done by immunoprecipitation analysis. Protein expression of autophagy and apoptosis markers along with Grp78, Hsp70, and Hsp90 was analyzed by immunoblotting. KEY FINDINGS: Gedunin exerts cytotoxic effects, causes increase in ROS generation, downregulates mitochondrial membrane potential and induces loss in DNA integrity. mRNA expression analysis revealed that gedunin sensitized A549 cells towards apoptosis by downregulating EGFR, PIK3CA, AKT, and autophagy. Gedunin also inhibited interaction between Hsp90:Beclin-1:Bcl-2, leading to downregulation of autophagy (Beclin-1, Atg5-12 complex, and LC3) and antiapoptotic protein Bcl-2, which may result in ER stress-induced apoptosis. Moreover, Hsp90 inhibition by gedunin did not cause upregulation of Hsp70 expression. SIGNIFICANCE: Gedunin induces apoptosis in lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and autophagy downregulation, thus making gedunin a good drug lead for targeting lung cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Limoninas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Antineoplásicos Fitogénicos/administración & dosificación , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Limoninas/administración & dosificación , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Biomolecules ; 9(10)2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591333

RESUMEN

The rotating-crystal magneto-optical diagnostic (RMOD) technique was developed as a sensitive and rapid platform for malaria diagnosis. Herein, we report a detailed in vivo assessment of the synchronized Plasmodium vinckei lentum strain blood-stage infections by the RMOD method and comparing the results to the unsynchronized Plasmodium yoelii 17X-NL (non-lethal) infections. Furthermore, we assess the hemozoin production and clearance dynamics in chloroquine-treated compared to untreated self-resolving infections by RMOD. The findings of the study suggest that the RMOD signal is directly proportional to the hemozoin content and closely follows the actual parasitemia level. The lack of long-term accumulation of hemozoin in peripheral blood implies a dynamic equilibrium between the hemozoin production rate of the parasites and the immune system's clearing mechanism. Using parasites with synchronous blood stage cycle, which resemble human malaria parasite infections with Plasmodium falciparum and Plasmodium vivax, we are demonstrating that the RMOD detects both hemozoin production and clearance rates with high sensitivity and temporal resolution. Thus, RMOD technique offers a quantitative tool to follow the maturation of the malaria parasites even on sub-cycle timescales.


Asunto(s)
Hemoproteínas/metabolismo , Malaria/diagnóstico , Parasitemia/diagnóstico , Plasmodium/metabolismo , Animales , Análisis Químico de la Sangre , Cloroquina/administración & dosificación , Cloroquina/farmacología , Modelos Animales de Enfermedad , Diagnóstico Precoz , Femenino , Hemoproteínas/efectos de los fármacos , Humanos , Estadios del Ciclo de Vida , Malaria/tratamiento farmacológico , Ratones , Microscopía de Polarización , Parasitemia/tratamiento farmacológico , Plasmodium/clasificación , Plasmodium/efectos de los fármacos , Sensibilidad y Especificidad
13.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31508802

RESUMEN

Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.


Asunto(s)
Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/genética , Neoplasias/genética , Animales , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Humanos , Agregado de Proteínas
14.
J Med Syst ; 43(9): 302, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31396722

RESUMEN

The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/patología , Diagnóstico por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Enfermedad de Alzheimer/clasificación , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos
15.
Anticancer Agents Med Chem ; 19(2): 184-193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30370860

RESUMEN

BACKGROUND: Despite a number of measures having been taken for cancer management, it is still the second leading cause of death worldwide. p53 is the protein principally being targeted for cancer treatment. Targeting p53 localization may be an effective strategy in chemotherapy as it controls major cell death pathways based on its cellular localization. Anthraquinones are bioactive compounds widely being considered as potential anticancer agents but their mechanism of action is yet to be explored. It has been shown that the number and position of hydroxyl groups within the different anthraquinones like Emodin and Chrysophanol reflects the number of intermolecular hydrogen bonds which affect its activity. Emodin contains an additional OH group at C-3, in comparison to Chrysophanol and may differentially regulate different cell death pathways in cancer cell. OBJECTIVE: The present study was aimed to investigate the effect of two anthraquinones Emodin and Chrysophanol on induction of different cell death pathways in human lung cancer cells (A549 cell line) and whether single OH group difference between these compounds differentially regulate cell death pathways. METHODS: The cytotoxic effect of Emodin and Chrysophanol was determined by the MTT assay. The expression of autophagy and apoptosis marker genes at mRNA and protein level after treatment was checked by the RT-PCR and Western Blot, respectively. For cellular localization of p53 after treatment, we performed immunofluorescence microscopy. RESULTS: We observed that both compounds depicted a dose-dependent cytotoxic response in A549 cells which was in concurrence with the markers associated with oxidative stress such as an increase in ROS generation, decrease in MMP and DNA damage. We also observed that both compounds up-regulated the p53 expression where Emodin causes nuclear p53 localization, which leads to down-regulation in mTOR expression and induces autophagy while Chrysophanol inhibits p53 translocation into nucleus, up-regulates mTOR expression and inhibits autophagy. CONCLUSION: From this study, it may be concluded that the structural difference of single hydroxyl group may switch the mechanism from one pathway to another which could be useful in the future to improve anticancer treatment and help in the development of new selective therapies.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Emodina/farmacología , Hidróxidos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Células A549 , Antraquinonas/química , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Emodina/química , Humanos , Hidróxidos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
16.
Int J Biochem Cell Biol ; 96: 90-95, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29355754

RESUMEN

Loss of p53 function via mutation is a very common cause of human cancers. Recent studies have provided evidence on presence of self aggregated p53 in cancer cells leading to its altered functions towards cause of cancer. The general notion has been that mutated p53 exposes adhesive sites that promote self aggregation, however a complete mechanistic understanding to this has been lacking. We embarked on the present study towards exploring the differential aggregation pattern in cells expressing mutated TP53 (HaCaT keratinocytes) vs those expressing the wild type copy of the p53 protein (A549 lung cancer cell line). The studies led us to interesting observation that formation of p53 protein aggregates is not always associated with TP53 mutation. The A549 lung cancer cells, having wild type TP53, showed the appearance of p53 protein aggregates, while no protein aggregates were observed in normal HaCaT keratinocytes carrying mutant TP53. We went on to study the effect of blocking protein aggregation by emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) and figured that inhibiting p53 protein aggregation can elevate the level of autophagy in A549 lung cancer cell line while there is no significant effect on autophagy in normal non-cancerous HaCaT cells. Moreover, ATG5 was found to be coaggregated with p53 aggregates which dissociated after emodin treatment, indicating further induction of autophagy in A549 cells only. From these observations, we conclude that the increased level of autophagy might be the mechanism for the removal of p53 protein aggregates which restores p53 function in A549 cells after emodin treatment .This encourages further studies towards deciphering related mechanistic aspects vis-à-vis potential therapeutic strategies against cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Emodina/farmacología , Neoplasias Pulmonares/metabolismo , Agregado de Proteínas/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína p53 Supresora de Tumor/genética
17.
Phytopathology ; 107(6): 692-703, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383281

RESUMEN

Rhizoctonia solani anastomosis groups (AG)-8 and AG-2-1 and R. oryzae are ubiquitous in cereal-based cropping systems of the Columbia Plateau of the Inland Pacific Northwest and commonly infect wheat. AG-8 and R. oryzae, causal agents of Rhizoctonia root rot and bare patch, are most commonly found in fields in the low-precipitation zone, whereas R. solani AG-2-1 is much less virulent on wheat and is distributed in fields throughout the low-, intermediate-, and high-precipitation zones. Fluorescent Pseudomonas spp. that produce the antibiotic phenazine-1-carboxylic acid (PCA) also are abundant in the rhizosphere of crops grown in the low-precipitation zone but their broader geographic distribution and effect on populations of Rhizoctonia is unknown. To address these questions, we surveyed the distribution of PCA producers (Phz+) in 59 fields in cereal-based cropping systems throughout the Columbia Plateau. Phz+ Pseudomonas spp. were detected in 37 of 59 samples and comprised from 0 to 12.5% of the total culturable heterotrophic aerobic rhizosphere bacteria. The frequency with which individual plants were colonized by Phz+ pseudomonads ranged from 0 to 100%. High and moderate colonization frequencies of Phz+ pseudomonads were associated with roots from fields located in the driest areas whereas only moderate and low colonization frequencies were associated with crops where higher annual precipitation occurs. Thus, the geographic distribution of Phz+ pseudomonads overlaps closely with the distribution of R. solani AG-8 but not with that of R. oryzae or R. solani AG-2-1. Moreover, linear regression analysis demonstrated a highly significant inverse relationship between annual precipitation and the frequency of rhizospheres colonized by Phz+ pseudomonads. Phz+ pseudomonads representative of the four major indigenous species (P. aridus, P. cerealis, P. orientalis, and P. synxantha) suppressed Rhizoctonia root rot of wheat when applied as seed treatments. In vitro, mean 50% effective dose values for isolates of AG-8 and AG-2-1 from fields with high and low frequencies of phenazine producers did not differ significantly, nor was there a correlation between virulence of an isolate and sensitivity to PCA, resulting in rejection of the hypothesis that tolerance in Rhizoctonia spp. to PCA develops in nature upon exposure to Phz+ pseudomonads.


Asunto(s)
Hordeum/microbiología , Enfermedades de las Plantas/prevención & control , Pseudomonas/química , Rhizoctonia/efectos de los fármacos , Agentes de Control Biológico , Productos Agrícolas , Grano Comestible/microbiología , Geografía , Concentración de Iones de Hidrógeno , Fenazinas/metabolismo , Fenazinas/farmacología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Pseudomonas/fisiología , Rhizoctonia/crecimiento & desarrollo , Rizosfera , Virulencia
18.
Front Biosci (Elite Ed) ; 9(1): 54-66, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27814589

RESUMEN

GRP78 (glucose regulated protein 78) is a major Endoplasmic Reticulum (ER) chaperone that plays a pivotal role in normal ER functioning. Its increased expression also works as an indicator of ER stress. Its anti-apoptotic and pro-autophagic activity makes it an intriguing target to study the relationship between GRP78 and p53, which is also a major regulator of apoptosis and autophagy. Here, we studied the effect of Rotenone and Parathion on human lung cancer cells (A549 cell line) specifically with respect to ER stress and its association with different cell death pathways. In our study, we observed that both compounds increase reactive oxygen species (ROS) generation, down regulate mitochondrial membrane potential (MMP) and affect DNA integrity. Our results indicate that Parathion causes ER stress, up regulates the expression of GRP78, leads to nuclear localization of p53 and induces autophagy while Rotenone down regulates GRP78, causes cytoplasmic localization of p53 and inhibits autophagy. Therefore, it may be concluded that GRP78 affects p53 localization which in turn regulates autophagy.


Asunto(s)
Autofagia/fisiología , Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatina/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Paratión/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Proteína p53 Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/fisiología
19.
Phytopathology ; 106(5): 459-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26780436

RESUMEN

Rhizoctonia root rot and bare patch, caused by Rhizoctonia solani anastomosis group (AG)-8 and R. oryzae, are chronic and important yield-limiting diseases of wheat and barley in the Inland Pacific Northwest (PNW) of the United States. Major gaps remain in our understanding of the epidemiology of these diseases, in part because multiple Rhizoctonia AGs and species can be isolated from the same cereal roots from the field, contributing to the challenge of identifying the causal agents correctly. In this study, a collection totaling 498 isolates of Rhizoctonia was assembled from surveys conducted from 2000 to 2009, 2010, and 2011 over a wide range of cereal production fields throughout Washington State in the PNW. To determine the identity of the isolates, PCR with AG- or species-specific primers and/or DNA sequence analysis of the internal transcribed spacers was performed. R. solani AG-2-1, AG-8, AG-10, AG-3, AG-4, and AG-11 comprised 157 (32%), 70 (14%), 21 (4%), 20 (4%), 1 (0.2%), and 1 (0.2%), respectively, of the total isolates. AG-I-like binucleate Rhizoctonia sp. comprised 44 (9%) of the total; and 53 (11%), 80 (16%), and 51 (10%) were identified as R. oryzae genotypes I, II, and III, respectively. Isolates of AG-2-1, the dominant Rhizoctonia, occurred in all six agronomic zones defined by annual precipitation and temperature within the region sampled. Isolates of AG-8 also were cosmopolitan in their distribution but the frequency of isolation varied among years, and they were most abundant in zones of low and moderate precipitation. R. oryzae was cosmopolitan, and collectively the three genotypes comprised 37% of the isolates. Only isolates of R. solani AG-8 and R. oryzae genotypes II and III (but not genotype I) caused symptoms typically associated with Rhizoctonia root rot and bare patch of wheat. Isolates of AG-2-1 caused only mild root rot and AG-I-like binucleate isolates and members of groups AG-3, AG-4, and AG-11 showed only slight or no discoloration of the roots. However, all isolates of AG-2-1 caused severe damping-off of canola, resulting in 100% mortality. Isolates of Rhizoctonia AG-8, AG-2-1, AG-10, AG-I-like binucleate Rhizoctonia, and R. oryzae genotypes I, II, and III could be distinguished by colony morphology on potato dextrose agar, by PCR with specific primers, or by the type and severity of disease on wheat and canola seedlings, and results of these approaches correlated completely. Based on cultured isolates, we also identified the geographic distribution of all of these Rhizoctonia isolates in cereal-based production systems throughout Washington State.


Asunto(s)
Rhizoctonia/genética , Brassica , Filogeografía , Rhizoctonia/citología , Rhizoctonia/patogenicidad , Triticum , Virulencia , Washingtón
20.
PLoS One ; 10(9): e0137991, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26405812

RESUMEN

The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic effects in lung cancer cells and stimulated the productions of ROS after exposure for 24 hrs. Results from western blotting suggest that Rohitukine triggered apoptosis in A549 cell line through upregulation of p53, caspase9 and down regulation of Bcl-2 protein. The scope of this study is to understand the mechanism of anticancer activity of Rohitukine to increase the repertoire of anticancer drugs, so that problem created by emergence of resistance towards standard anticancer compounds can be alleviated.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cromonas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Piperidinas/farmacología , Saccharomyces cerevisiae/enzimología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Eliminación de Gen , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA