Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 8(1): 132, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34059655

RESUMEN

Since ancient times, humans have bred several plants that we rely on today. However, little is known about the divergence of most of these plants. In the present study, we investigated the divergence of Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey), a traditional leafy vegetable in Kyoto (Japan), by combining genetic analysis and a survey of ancient literature. Mibuna is considered to have been bred 200 years ago from Mizuna, another traditional leafy vegetable in Kyoto. Mibuna has simple spatulate leaves, whereas Mizuna has characteristic serrated leaves. The quantitative trait loci (QTL) and gene expression analyses suggested that the downregulation of BrTCP15 expression contributed to the change in the leaf shape from serrated to simple spatulate. Interestingly, the SNP analysis indicated that the genomic region containing the BrTCP15 locus was transferred to Mibuna by introgression. Furthermore, we conducted a survey of ancient literature to reveal the divergence of Mibuna and found that hybridization between Mizuna and a simple-leaved turnip might have occurred in the past. Indeed, the genomic analysis of multiple turnip cultivars showed that one of the cultivars, Murasakihime, has almost the same sequence in the BrTCP15 region as Mibuna. These results suggest that the hybridization between Mizuna and turnip has resulted in the establishment of Mibuna.

2.
Plants (Basel) ; 9(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076473

RESUMEN

Plants have a high regeneration capacity and some plant species can regenerate clone plants, called plantlets, from detached vegetative organs. We previously outlined the molecular mechanisms underlying plantlet regeneration from Rorippa aquatica (Brassicaceae) leaf explants. However, the fundamental difference between the plant species that can and cannot regenerate plantlets from vegetative organs remains unclear. Here, we hypothesized that the viability of leaf explants is a key factor affecting the regeneration capacity of R. aquatica. To test this hypothesis, the viability of R. aquatica and Arabidopsis thaliana leaf explants were compared, with respect to the maintenance of photosynthetic activity, senescence, and immune response. Time-course analyses of photosynthetic activity revealed that R. aquatica leaf explants can survive longer than those of A. thaliana. Endogenous abscisic acid (ABA) and jasmonic acid (JA) were found at low levels in leaf explant of R. aquatica. Time-course transcriptome analysis of R. aquatica and A. thaliana leaf explants suggested that senescence was suppressed at the transcriptional level in R. aquatica. Application of exogenous ABA reduced the efficiency of plantlet regeneration. Overall, our results propose that in nature, plant species that can regenerate in nature can survive for a long time.

3.
Sci Rep ; 8(1): 3302, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459626

RESUMEN

Because natural variation in wild species is likely the result of local adaptation, it provides a valuable resource for understanding plant-environmental interactions. Rorippa aquatica (Brassicaceae) is a semi-aquatic North American plant with morphological differences between several accessions, but little information available on any physiological differences. Here, we surveyed the transcriptomes of two R. aquatica accessions and identified cryptic physiological differences between them. We first reconstructed a Rorippa phylogeny to confirm relationships between the accessions. We performed large-scale RNA-seq and de novo assembly; the resulting 87,754 unigenes were then annotated via comparisons to different databases. Between-accession physiological variation was identified with transcriptomes from both accessions. Transcriptome data were analyzed with principal component analysis and self-organizing map. Results of analyses suggested that photosynthetic capability differs between the accessions. Indeed, physiological experiments revealed between-accession variation in electron transport rate and the redox state of the plastoquinone pool. These results indicated that one accession may have adapted to differences in temperature or length of the growing season.


Asunto(s)
Adaptación Fisiológica , Brassicaceae/genética , Fotosíntesis/genética , Transcriptoma/genética , Brassicaceae/metabolismo , Brassicaceae/fisiología , Regulación de la Expresión Génica de las Plantas , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Temperatura , Estados Unidos
4.
Plant Cell ; 29(12): 3255-3268, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29208704

RESUMEN

The Arabidopsis thaliana transcription factor SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) regulates hundreds of genes in response to DNA damage, and this results in the activation of cell cycle arrest, DNA repair, endoreduplication, and programmed cell death. However, it is not clear how this single transcription factor regulates each of these pathways. We previously reported that phosphorylation of five Ser-Gln (SQ) motifs in the C-terminal region of SOG1 are required to activate downstream pathways. In this study, we introduced Ser-to-Ala (AQ) substitutions in these five SQ motifs to progressively eliminate them and then we examined the effects on DNA damage responses. We found that all SQs are required for the full activation of SOG1 and that the expression level of most downstream genes changed incrementally depending on the number of phosphorylated SQ sites. Genes involved in DNA repair and cell cycle progression underwent stepwise activation and inhibition respectively as the number of phosphorylated SQ sites increased. Also, inhibition of DNA synthesis, programmed cell death, and cell differentiation were incrementally induced as the number of phosphorylated SQ sites increased. These results show that the extent of SQ phosphorylation in SOG1 regulates gene expression levels and determines the strength of DNA damage responses.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Daño del ADN , Rayos gamma , Glicina/metabolismo , Serina/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bleomicina/farmacología , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Reparación del ADN/genética , Replicación del ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ontología de Genes , Genes de Plantas , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Factores de Transcripción/genética
5.
J Plant Res ; 130(3): 539-550, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28258381

RESUMEN

Brassica rapa show a wide range of morphological variations. In particular, the leaf morphologies of the Japanese traditional leafy vegetables Mizuna and Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey) are distinctly different, even though they are closely related cultivars that are easy to cross. In addition to the differences in the gross morphology of leaves, some cultivars of Mibuna (Kyo-nishiki) have many trichomes on its leaves, whereas Mizuna (Kyo-mizore) does not. To identify the genes responsible for the different number of trichomes, we performed a quantitative trait loci (QTL) analysis of Mizuna and Mibuna. To construct linkage maps for these cultivars, we used RNA-seq data to develop cleaved amplified polymorphic sequence (CAPS) markers. We also performed a restriction site-associated DNA sequencing (RAD-seq) analysis to detect single-nucleotide polymorphisms (SNPs). Two QTL analyses were performed in different years, and both analyses indicated that the largest effect was found on LG A9. Expression analyses showed that a gene homologous to GLABRA1 (GL1), a transcription factor implicated in trichome development in Arabidopsis thaliana, and the sequences 3'-flanking (downstream) of BrGL1, differed considerably between Mizuna (Kyo-mizore) and Mibuna (Kyo-nishiki). These results indicate that BrGL1 on LG A9 is one of the candidate genes responsible for the difference in trichome number between Mizuna and Mibuna. Detecting genes that are responsible for morphological variations allows us to better understand the breeding history of Mizuna and Mibuna.


Asunto(s)
Brassica rapa/genética , Sitios de Carácter Cuantitativo/genética , Tricomas/genética , Verduras/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Brassica rapa/anatomía & histología , Brassica rapa/clasificación , Cruzamiento , Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Ligamiento Genético , Marcadores Genéticos , Técnicas de Genotipaje , Japón , Fenotipo , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA