Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38451817

RESUMEN

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hepatopatías , Sepsis , Humanos , Macrófagos del Hígado , Hígado/patología , Hepatopatías/patología , Organoides , Sepsis/patología , Endotoxinas , Diferenciación Celular
2.
Biol Methods Protoc ; 8(1): bpac034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694573

RESUMEN

Human-induced pluripotent stem cell (hiPSC)-derived hepatic cells are useful tools for regenerative medicine, and various culture substrates are currently used for their differentiation. We differentiated hiPSC-derived hepatic endoderm (HE), endothelial cells (ECs), and mesenchymal cells (MCs) using Laminin-511 (LN) coating to generate liver organoids, hiPSC-liver buds (hiPSC-LBs), which exhibited therapeutic effects when transplanted into disease model animals. Stably producing significant amounts of hiPSC-LBs is necessary for sufficient therapeutic effects. However, general precoating (standard coating) requires quick manipulation, often causing failure for inexperienced cell cultures, we thus tested direct LN addition to the culture medium (Direct coating). Using quantitative gene expression, flow cytometry, albumin secretion, and ammonia metabolism, we demonstrated that Standard and Direct coating similarly induce hiPSC-derived hepatocyte, mesodermal cell, EC, and MC differentiation. Standard and Direct coating-differentiated cells generated iPSC-LBs with equivalent hepatic functions. Furthermore, Direct coating enabled stable induction of differentiation independent of individual culture skills and reduced total amount of LN use as the same differentiated cell quality can be obtained upon LN supplementation at lower concentrations. In summary, the results of this study suggest that Direct coating could enable stable hiPSC-LB production at a low cost, thereby yielding mass cell production using hiPSCs.

3.
Neurosci Lett ; 615: 44-9, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26797580

RESUMEN

Rho kinase (ROCK) regulates the functions of several target proteins via its kinase activity. Therefore, ROCK activity inhibition may provide new possibilities of controlling the in vitro neuronal differentiation of embryonic stem (ES) cells. When we investigated the effects of the ROCK inhibitor Y-27632 on ES cell differentiation, we found that this inhibitor promoted the differentiation of these cells into neurons. Furthermore, we found that ROCK inhibition may promote the neuronal differentiation of ES cells by activating extracellular signal-regulated kinase (ERK) involved in the ERK signaling pathway. In this study, we investigated the effects of specific inhibitors of several cellular signaling components on the promotion of neuronal differentiation in ES cells to clarify the roles of cellular signaling pathways in the ROCK inhibitor-mediated cell differentiation process. Our results suggest that ERK may be activated via the Ras/Raf/MEK, the PI3K/PKC, or the Cdc42/Rac signaling pathways in the ROCK inhibitor-mediated promotion of neuronal differentiation in ES cells.


Asunto(s)
Amidas/farmacología , Células Madre Embrionarias/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Piridinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Ratones , Neuronas/citología , Transducción de Señal
4.
Cytotechnology ; 68(3): 409-17, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25354731

RESUMEN

Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of ßIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells.

5.
Neurosci Lett ; 579: 58-63, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25038419

RESUMEN

Rho kinase (ROCK) is one of the major downstream mediators of Rho. Rho plays crucial regulatory roles in the cellular proliferation and differentiation. Because a ROCK inhibitor, Y-27632, is known to inhibit the dissociation-induced cell death in human embryonic stem (ES) cells, we investigated the effects of this ROCK inhibitor on the differentiation of the mouse ES cells. The ROCK inhibitor promoted the differentiation of the ES cells into neurons, particularly motor and sensory neurons. The addition of both ROCK inhibitor and nerve growth factor (NGF) strongly stimulated the differentiation of the ES cells into neurons. Moreover, the ROCK inhibitor promoted the differentiation of the ES cells into muscle cells. The ES cells primarily differentiated into neurons rather than muscle cells. We found that the ROCK inhibitor may promote the neuronal differentiation of the ES cells by activating the extracellular signal-regulated kinase (ERK) signaling pathway. These results suggest that the ROCK inhibitor has a significant potential to regulate the differentiation of the ES cells.


Asunto(s)
Amidas/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...